104 research outputs found

    Maintaining Approximate Maximum Matching in an Incremental Bipartite Graph in Polylogarithmic Update Time

    Get PDF
    A sparse subgraph G\u27 of G is called a matching sparsifier if the size or weight of matching in G\u27 is approximately equal to the size or weight of maximum matching in G. Recently, algorithms have been developed to find matching sparsifiers in a static bipartite graph. In this paper, we show that we can find matching sparsifier even in an incremental bipartite graph. This observation leads to following results: 1. We design an algorithm that maintains a (1+epsilon) approximate matching in an incremental bipartite graph in O(log^2(n) / (epsilon^{4}) update time. 2. For weighted graphs, we design an algorithm that maintains (1+epsilon) approximate weighted matching in O((log(n)*log(n*N)) / (epsilon^4) update time where maxweight is the maximum weight of any edge in the graph

    Incremental (1ϵ)(1-\epsilon)-approximate dynamic matching in O(poly(1/ϵ))O(poly(1/\epsilon)) update time

    Full text link
    In the dynamic approximate maximum bipartite matching problem we are given bipartite graph GG undergoing updates and our goal is to maintain a matching of GG which is large compared the maximum matching size μ(G)\mu(G). We define a dynamic matching algorithm to be α\alpha (respectively (α,β)(\alpha, \beta))-approximate if it maintains matching MM such that at all times Mμ(G)α|M | \geq \mu(G) \cdot \alpha (respectively Mμ(G)αβ|M| \geq \mu(G) \cdot \alpha - \beta). We present the first deterministic (1ϵ)(1-\epsilon )-approximate dynamic matching algorithm with O(poly(ϵ1))O(poly(\epsilon ^{-1})) amortized update time for graphs undergoing edge insertions. Previous solutions either required super-constant [Gupta FSTTCS'14, Bhattacharya-Kiss-Saranurak SODA'23] or exponential in 1/ϵ1/\epsilon [Grandoni-Leonardi-Sankowski-Schwiegelshohn-Solomon SODA'19] update time. Our implementation is arguably simpler than the mentioned algorithms and its description is self contained. Moreover, we show that if we allow for additive (1,ϵn)(1, \epsilon \cdot n)-approximation our algorithm seamlessly extends to also handle vertex deletions, on top of edge insertions. This makes our algorithm one of the few small update time algorithms for (1ϵ)(1-\epsilon )-approximate dynamic matching allowing for updates both increasing and decreasing the maximum matching size of GG in a fully dynamic manner

    Incremental (1-?)-Approximate Dynamic Matching in O(poly(1/?)) Update Time

    Get PDF
    In the dynamic approximate maximum bipartite matching problem we are given bipartite graph G undergoing updates and our goal is to maintain a matching of G which is large compared the maximum matching size ?(G). We define a dynamic matching algorithm to be ? (respectively (?, ?))-approximate if it maintains matching M such that at all times |M | ? ?(G) ? ? (respectively |M| ? ?(G) ? ? - ?). We present the first deterministic (1-?)-approximate dynamic matching algorithm with O(poly(?^{-1})) amortized update time for graphs undergoing edge insertions. Previous solutions either required super-constant [Gupta FSTTCS\u2714, Bhattacharya-Kiss-Saranurak SODA\u2723] or exponential in 1/? [Grandoni-Leonardi-Sankowski-Schwiegelshohn-Solomon SODA\u2719] update time. Our implementation is arguably simpler than the mentioned algorithms and its description is self contained. Moreover, we show that if we allow for additive (1, ??n)-approximation our algorithm seamlessly extends to also handle vertex deletions, on top of edge insertions. This makes our algorithm one of the few small update time algorithms for (1-?)-approximate dynamic matching allowing for updates both increasing and decreasing the maximum matching size of G in a fully dynamic manner. Our algorithm relies on the weighted variant of the celebrated Edge-Degree-Constrained-Subgraph (EDCS) datastructure introduced by [Bernstein-Stein ICALP\u2715]. As far as we are aware we introduce the first application of the weighted-EDCS for arbitrarily dense graphs. We also present a significantly simplified proof for the approximation ratio of weighed-EDCS as a matching sparsifier compared to [Bernstein-Stein], as well as simple descriptions of a fractional matching and fractional vertex cover defined on top of the EDCS. Considering the wide range of applications EDCS has found in settings such as streaming, sub-linear, stochastic and more we hope our techniques will be of independent research interest outside of the dynamic setting

    Deterministic Rounding of Dynamic Fractional Matchings

    Get PDF
    We present a framework for deterministically rounding a dynamic fractional matching. Applying our framework in a black-box manner on top of existing fractional matching algorithms, we derive the following new results: (1) The first deterministic algorithm for maintaining a (2-?)-approximate maximum matching in a fully dynamic bipartite graph, in arbitrarily small polynomial update time. (2) The first deterministic algorithm for maintaining a (1+?)-approximate maximum matching in a decremental bipartite graph, in polylogarithmic update time. (3) The first deterministic algorithm for maintaining a (2+?)-approximate maximum matching in a fully dynamic general graph, in small polylogarithmic (specifically, O(log? n)) update time. These results are respectively obtained by applying our framework on top of the fractional matching algorithms of Bhattacharya et al. [STOC\u2716], Bernstein et al. [FOCS\u2720], and Bhattacharya and Kulkarni [SODA\u2719]. Previously, there were two known general-purpose rounding schemes for dynamic fractional matchings. Both these schemes, by Arar et al. [ICALP\u2718] and Wajc [STOC\u2720], were randomized. Our rounding scheme works by maintaining a good matching-sparsifier with bounded arboricity, and then applying the algorithm of Peleg and Solomon [SODA\u2716] to maintain a near-optimal matching in this low arboricity graph. To the best of our knowledge, this is the first dynamic matching algorithm that works on general graphs by using an algorithm for low-arboricity graphs as a black-box subroutine. This feature of our rounding scheme might be of independent interest

    Streaming Verification of Graph Properties

    Get PDF
    Streaming interactive proofs (SIPs) are a framework for outsourced computation. A computationally limited streaming client (the verifier) hands over a large data set to an untrusted server (the prover) in the cloud and the two parties run a protocol to confirm the correctness of result with high probability. SIPs are particularly interesting for problems that are hard to solve (or even approximate) well in a streaming setting. The most notable of these problems is finding maximum matchings, which has received intense interest in recent years but has strong lower bounds even for constant factor approximations. In this paper, we present efficient streaming interactive proofs that can verify maximum matchings exactly. Our results cover all flavors of matchings (bipartite/non-bipartite and weighted). In addition, we also present streaming verifiers for approximate metric TSP. In particular, these are the first efficient results for weighted matchings and for metric TSP in any streaming verification model.Comment: 26 pages, 2 figure, 1 tabl

    Dynamic Maxflow via Dynamic Interior Point Methods

    Full text link
    In this paper we provide an algorithm for maintaining a (1ϵ)(1-\epsilon)-approximate maximum flow in a dynamic, capacitated graph undergoing edge additions. Over a sequence of mm-additions to an nn-node graph where every edge has capacity O(poly(m))O(\mathrm{poly}(m)) our algorithm runs in time O^(mnϵ1)\widehat{O}(m \sqrt{n} \cdot \epsilon^{-1}). To obtain this result we design dynamic data structures for the more general problem of detecting when the value of the minimum cost circulation in a dynamic graph undergoing edge additions obtains value at most FF (exactly) for a given threshold FF. Over a sequence mm-additions to an nn-node graph where every edge has capacity O(poly(m))O(\mathrm{poly}(m)) and cost O(poly(m))O(\mathrm{poly}(m)) we solve this thresholded minimum cost flow problem in O^(mn)\widehat{O}(m \sqrt{n}). Both of our algorithms succeed with high probability against an adaptive adversary. We obtain these results by dynamizing the recent interior point method used to obtain an almost linear time algorithm for minimum cost flow (Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva 2022), and introducing a new dynamic data structure for maintaining minimum ratio cycles in an undirected graph that succeeds with high probability against adaptive adversaries.Comment: 30 page

    On Fully Dynamic Graph Sparsifiers

    No full text
    We initiate the study of dynamic algorithms for graph sparsification problems and obtain fully dynamic algorithms, allowing both edge insertions and edge deletions, that take polylogarithmic time after each update in the graph. Our three main results are as follows. First, we give a fully dynamic algorithm for maintaining a (1±ϵ) (1 \pm \epsilon) -spectral sparsifier with amortized update time poly(logn,ϵ1)poly(\log{n}, \epsilon^{-1}). Second, we give a fully dynamic algorithm for maintaining a (1±ϵ) (1 \pm \epsilon) -cut sparsifier with \emph{worst-case} update time poly(logn,ϵ1)poly(\log{n}, \epsilon^{-1}). Both sparsifiers have size npoly(logn,ϵ1) n \cdot poly(\log{n}, \epsilon^{-1}). Third, we apply our dynamic sparsifier algorithm to obtain a fully dynamic algorithm for maintaining a (1+ϵ)(1 + \epsilon)-approximation to the value of the maximum flow in an unweighted, undirected, bipartite graph with amortized update time poly(logn,ϵ1)poly(\log{n}, \epsilon^{-1})

    Fully Dynamic Matching in Bipartite Graphs

    Full text link
    Maximum cardinality matching in bipartite graphs is an important and well-studied problem. The fully dynamic version, in which edges are inserted and deleted over time has also been the subject of much attention. Existing algorithms for dynamic matching (in general graphs) seem to fall into two groups: there are fast (mostly randomized) algorithms that do not achieve a better than 2-approximation, and there slow algorithms with \O(\sqrt{m}) update time that achieve a better-than-2 approximation. Thus the obvious question is whether we can design an algorithm -- deterministic or randomized -- that achieves a tradeoff between these two: a o(m)o(\sqrt{m}) approximation and a better-than-2 approximation simultaneously. We answer this question in the affirmative for bipartite graphs. Our main result is a fully dynamic algorithm that maintains a 3/2 + \eps approximation in worst-case update time O(m^{1/4}\eps^{/2.5}). We also give stronger results for graphs whose arboricity is at most \al, achieving a (1+ \eps) approximation in worst-case time O(\al (\al + \log n)) for constant \eps. When the arboricity is constant, this bound is O(logn)O(\log n) and when the arboricity is polylogarithmic the update time is also polylogarithmic. The most important technical developement is the use of an intermediate graph we call an edge degree constrained subgraph (EDCS). This graph places constraints on the sum of the degrees of the endpoints of each edge: upper bounds for matched edges and lower bounds for unmatched edges. The main technical content of our paper involves showing both how to maintain an EDCS dynamically and that and EDCS always contains a sufficiently large matching. We also make use of graph orientations to help bound the amount of work done during each update.Comment: Longer version of paper that appears in ICALP 201

    Metatheorems for Dynamic Weighted Matching

    Get PDF
    We consider the maximum weight matching (MWM) problem in dynamic graphs. We provide two reductions. The first reduces the dynamic MWM problem on m-edge, n-node graphs with weights bounded by N to the problem with weights bounded by (n/eps)^2, so that if the MWM problem can be alpha-approximated with update time t(m,n,N), then it can also be (1+eps)alpha-approximated with update time O(t(m,n,(n/eps)^2)log^2 n+log n loglog N)). The second reduction reduces the dynamic MWM problem to the dynamic maximum cardinality matching (MCM) problem in which the graph is unweighted. This reduction shows that if there is an alpha-approximation algorithm for MCM with update time t(m,n) in m-edge n-node graphs, then there is also a (2+eps)alpha-approximation algorithm for MWM with update time O(t(m,n)eps^{-2}log^2 N). We also obtain better bounds in our reductions if the ratio between the largest and the smallest edge weight is small. Combined with recent work on MCM, these two reductions substantially improve upon the state-of-the-art of dynamic MWM algorithms
    corecore