1,516 research outputs found

    Conserver la conscience de l'environnement en conduite semi-autonome grâce à un siège haptique

    Get PDF
    National audienceSemi-autonomous driving is rapidly evolving and one of its major issues is the reduction of the driver's attention to his/her environment. After a brief analysis of the factors limiting autonomous systems and a study of current interactions increasing this situational awareness, and more particularly haptic interactions, this article proposes the use of vibrations in the seat. Vibrations, due to their location and variations in frequency and amplitude, make it possible to convey different information to the driver such as the position of obstacles around his/her vehicle as well as the state of deterioration of the road markings. The results of initial exploratory tests are promising on the use of haptic interactions. They make it possible to set up the design and procedure for future experiments.La conduite semi-autonome évolue rapidement et l'une de ses principales problématiques est la réduction de l'attention du conducteur vis-à-vis de son environnement. Après une brève analyse des facteurs limitant les systèmes autonomes ainsi qu'une étude des interactions actuelles augmentant cette conscience de la situation, et plus particulièrement des interactions haptiques, cet article propose l'utilisation de vibrations dans le siège. Les vibrations, de par leur localisation et variations en fréquence et amplitude, permettent de transmettre différentes informations au conducteur comme la position d'obstacles autour de son véhicule ainsi que l'état de dégradation du marquage au sol. Les résultats de premiers tests exploratoires sont prometteurs sur l'utilisation d'interactions haptiques. Ils permettent de mettre en place le design et la procédure des futures expériences

    Automated driving: A literature review of the take over request in conditional automation

    Get PDF
    This article belongs to the Special Issue Autonomous Vehicles TechnologyIn conditional automation (level 3), human drivers can hand over the Driving Dynamic Task (DDT) to the Automated Driving System (ADS) and only be ready to resume control in emergency situations, allowing them to be engaged in non-driving related tasks (NDRT) whilst the vehicle operates within its Operational Design Domain (ODD). Outside the ODD, a safe transition process from the ADS engaged mode to manual driving should be initiated by the system through the issue of an appropriate Take Over Request (TOR). In this case, the driver's state plays a fundamental role, as a low attention level might increase driver reaction time to take over control of the vehicle. This paper summarizes and analyzes previously published works in the field of conditional automation and the TOR process. It introduces the topic in the appropriate context describing as well a variety of concerns that are associated with the TOR. It also provides theoretical foundations on implemented designs, and report on concrete examples that are targeted towards designers and the general public. Moreover, it compiles guidelines and standards related to automation in driving and highlights the research gaps that need to be addressed in future research, discussing also approaches and limitations and providing conclusions.This work was funded by the Austrian Ministry for Climate Action, Environment, Energy, Mobility, Innovation, and Technology (BMK) Endowed Professorship for Sustainable Transport Logistics 4.0; the Spanish Ministry of Economy, Industry and Competitiveness under the TRA201563708-R and TRA2016-78886-C3-1-R project; open access funding by the Johannes Kepler University Linz

    From Manual Driving to Automated Driving: A Review of 10 Years of AutoUI

    Full text link
    This paper gives an overview of the ten-year devel- opment of the papers presented at the International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutoUI) from 2009 to 2018. We categorize the topics into two main groups, namely, manual driving-related research and automated driving-related re- search. Within manual driving, we mainly focus on studies on user interfaces (UIs), driver states, augmented reality and head-up displays, and methodology; Within automated driv- ing, we discuss topics, such as takeover, acceptance and trust, interacting with road users, UIs, and methodology. We also discuss the main challenges and future directions for AutoUI and offer a roadmap for the research in this area.https://deepblue.lib.umich.edu/bitstream/2027.42/153959/1/From Manual Driving to Automated Driving: A Review of 10 Years of AutoUI.pdfDescription of From Manual Driving to Automated Driving: A Review of 10 Years of AutoUI.pdf : Main articl

    Driver Persistence, Safety and Older Adult Self-efficacy: Addressing Driving Challenges Using Innovative Multimodal Communication Concepts

    Get PDF
    New assisted driving technology provides a solution to enabling driver persistence while also addressing older adult fitness to drive issues. The proposed driver assistance system follows a detailed literature review, an analysis of secondary data, and the specification of a solution using human machine interaction (HMI) design methods. Overall, the assisted driving concept follows from a principled/ethical perspective in relation to promoting self-efficacy and enablement for older adults. The system is conceptualized as a supportive friend or ‘co-pilot’. It is argued that the use of new car-based sensors, along with machine learning intelligence and novel multimodal HMI communication methods will enable driver persistence while also promoting older adult self-efficacy and positive ageing

    Shared control strategies for automated vehicles

    Get PDF
    188 p.Los vehículos automatizados (AVs) han surgido como una solución tecnológica para compensar las deficiencias de la conducción manual. Sin embargo, esta tecnología aún no está lo suficientemente madura para reemplazar completamente al conductor, ya que esto plantea problemas técnicos, sociales y legales. Sin embargo, los accidentes siguen ocurriendo y se necesitan nuevas soluciones tecnológicas para mejorar la seguridad vial. En este contexto, el enfoque de control compartido, en el que el conductor permanece en el bucle de control y, junto con la automatización, forma un equipo bien coordinado que colabora continuamente en los niveles táctico y de control de la tarea de conducción, es una solución prometedora para mejorar el rendimiento de la conducción manual aprovechando los últimos avances en tecnología de conducción automatizada. Esta estrategia tiene como objetivo promover el desarrollo de sistemas de asistencia al conductor más avanzados y con mayor grade de cooperatición en comparación con los disponibles en los vehículos comerciales. En este sentido, los vehículos automatizados serán los supervisores que necesitan los conductores, y no al revés. La presente tesis aborda en profundidad el tema del control compartido en vehículos automatizados, tanto desde una perspectiva teórica como práctica. En primer lugar, se proporciona una revisión exhaustiva del estado del arte para brindar una descripción general de los conceptos y aplicaciones en los que los investigadores han estado trabajando durante lasúltimas dos décadas. Luego, se adopta un enfoque práctico mediante el desarrollo de un controlador para ayudar al conductor en el control lateral del vehículo. Este controlador y su sistema de toma de decisiones asociado (Módulo de Arbitraje) se integrarán en el marco general de conducción automatizada y se validarán en una plataforma de simulación con conductores reales. Finalmente, el controlador desarrollado se aplica a dos sistemas. El primero para asistir a un conductor distraído y el otro en la implementación de una función de seguridad para realizar maniobras de adelantamiento en carreteras de doble sentido. Al finalizar, se presentan las conclusiones más relevantes y las perspectivas de investigación futuras para el control compartido en la conducción automatizada

    Understanding Interactions for Smart Wheelchair Navigation in Crowds

    Get PDF

    '탑승자'의 관점의 시간, 위치 기반 차량 클러스터 UI 디자인 프레임 제안 연구

    Get PDF
    학위논문(석사)--서울대학교 대학원 :미술대학 디자인학부 디자인전공,2019. 8. 정의철.One important design issue is the examination of how the user interface (UI) supports the new user role in future mobility. However, there are few design studies on the passengers cognitive needs and behavior in Autonomous Vehicles (AVs) based on empirical data. There is no doubt that autonomous mobility technologies are growing. The technology is already aiding the driving experience, and it will change the mobility culture and the transition of driver into passenger. This study is based on the premise that future AV is capable of performing all driving tasks. It proposes a set of passenger-centered automotive cluster UI designs for future mobility employing two factors: time and path. A set of empirical data is provided to understand the passengers perspective. In this study, a solid set of empirical data on the cognitive needs of passengers is collected. Human cognitive characteristics and driving tasks are investigated from various viewpoints to understand the passengers iii perspective. The cognitive relationship in the driving environment is analyzed through a literature review on situation awareness (SA) and structuring of the data flow framework. The framework is further explored by connecting the technological role transformation to the passenger. To construct the empirical database on the passenger, three sets of user tests and in-depth interviews were undertaken. The user tests were designed employing the Wizard of Oz method, and the results were summarized using descriptive and exploratory analysis. Based on these insights, a set of UI designs from the perspective of the passenger was proposed, and usability tests were conducted to verify its effectiveness and usability. The results of the tests demonstrate that a major percentage of the information request was related to time (current time and duration) and path (vehicle location and surroundings). Based on the data, a UI framework was built. Two usage scenarios were designed, time-full and time-less, for better in-situation comprehension. Time- and path-based UI were proposed to flow with the scenarios. A usability test was conducted, and a passengers cognitive framework was defined. There are two aspects to this study: the data flow frameworks of the driver/passenger, and the UI design proposal. Situational precision from the perspective of the driver was analyzed to understand the relationship between the user, the vehicle and the road conditions. Further, the cognitive framework of the passenger was proposed based on the data. This study provides a solid understanding of drivers emerging needs when they are relieved of the cognitive burden of driving tasks. The UI features for AV are introduced based on the empirical data and research related to the provision of better situation awareness, focusing on time and location. This study contributes to the extant literature by observing the iv perspective of passengers in Autonomous vehicles based on a qualitative study. The proposed UI design will be further explored as a communication method between the system and the passive user in future mobility.사용자 인터페이스가 (UI) 미래 이동성에서 새로운 사용자 역할을 지지하는 디자인 도출은 미래 이동성 분야에서 중요한 디자인 이슈이다. 그러나 사용자 실험에 근거하여 자율주행차량 (AV) 의 탑승자인지 욕구와 행동에 대한 디자인 연구는 미미하다. 자율주행이 기술의 발전과 그 영역은 점차 넓어지고 있다. 해당 기술은 이미 운전 환경에 적용되고 있으며, 이로 인해 미래 이동문화에서 사용자의 역할은 '운전자'에서 '탑승자'로 변화한다. 본 연구는 미래 자율주행차량이 모든 운전 상황에 대처할 수 있다는 것을 전제로 한다. 사용자 실험을 통해 탑승자의 관점에 대한 분석을 진행하였고, 이를 기반으로 미래 모빌리티 환경에 적용될 사용자 인터페이스를 제안한다. 제안된 디자인은 운전자 중심의 상황인지에서 벗어나 탑승자 중심 인지 정보 요소를 분석하였고, 시간과 경로 두 가지 요소를 강조한 UI 를 제안한다. 본 연구에서 탑승자의 인지 정보 요구에 대한 실험적 데이터를 수집하였다. 탑승자의 관점을 이해하기 위해 다양한 관점에서 인간의 인지적 특성 및 운전 태스크를 관찰하였고, 상황인지 (SA) 에 관한 문헌 연구와 데이터 프레임워크 구조화를 통해 운전 환경에서 발생하는 인지적 요소 관계를 분석하였다. 제안된 프레임워크는 기술 변화에 따라 운전자가 탑승자로 변화되었을 때 운전 환경에서의 데이터 관계 변화를 시각적으로 구조화하여 심층적으로 탐구되었다. 탑승자의 인지 니즈 대한 실험적 데이터베이스를 수집하기 위해 총 3 세트의 유저 테스트와 심층 인터뷰가 수반되었다. 유저 테스트는 Wizard of Oz 방법을 사용하여 설계되었으며 실험 결과는 질적 연구방법론의 분석 방법을 통해 분석되었다. 실험을 통해 얻은 인사이트를 바탕으로 탑승자 관점에서 UI 디자인을 제안하고 사용성 테스트를 통해 효율성과 유용성을 5 점 리 커트 스케일로써 검증하였다. 실험 결과에 따르면 탑승자가 요청한 인지 정보는 시간 (현재 시각 및 기간)과 경로 (차량 위치 및 주변 환경)에 집중된 것을 관찰할 수 있었다. 이와 같은 데이터를 기반으로 UI 프레임워크를 구성하였다. 상황 속의 사용례를 제시하기 위하여도 가지 time-full 과 time-less 의 사용 시나리오를 구축하고, 제안된 시나리오에 따라 시간과 위치에 기반한 UI 를 제안하였다. 제안된 UI 에 대한 사용성 테스트를 진행하였고, 탑승자 관점에서의 운전상황 인지 워크 프레임을 완성하였다. 본 연구의 가치는 두 가지로 정리될 수 있다. 하나는 운전자 / 탑승자의 데이터 플로우 프레임워크를 제안하였다는 것과 두 번째는 탑승자의 관점을 지지하는 UI 디자인 제안에 있다. 운전자의 관점에서의 운전 상황을 분석하여 사용자, 차량, 그리고 도로 상태 간의 관계를 시각화하였고, 이는 탑승자인지 플로우 프레임워크를 제안하는데 기조적인 틀로써 사용되었다. 본 연구는 운전 태스크를 수행하는 데에 필요했던 인지 부담에서 벗어났을 때의 운전자가 필요로 하는 복합적인 니즈에 대해 관찰하고 미래 모빌리티 환경에 적합한 UI 의 디자인 요소에 대한 연구논문이다. 미래 자율주행차량 안의 사용자 인터페이스가 갖추어야 하는 요소를 실험적 데이터에 근거하여 제시하며, 시간과 루트를 강조하여 향상된 상황 인지를 제공하는 방법에 대한 심도있는 관찰을 기록한다. 본 연구는 질적 연구에 기초한 자율 차량의 탑승자 관점을 관찰함으로써 기존 자율주행이 디자인 연구에 기여할 것이다. 제안된 UI 디자인 미래 이동 성안에서 시스템과 탑승자 간의 커뮤니케이션 방법에 대한 연구로써 그 의의가 있다.ABSTRACT ...................................................................................................................... II CHAPTER 1. INTRODUCTION......................................................................................... 1 1.1. BACKGROUND ..............................................................................................................1 1.2. PURPOSE .....................................................................................................................7 1.3. RESEARCH QUESTION.....................................................................................................8 CHAPTER 2. LITERATURE REVIEW ..............................................................................11 2.1. SITATION AWARENESS (SA) ........................................................................................11 2.2. HUMAN INFORMATION PROCESSING MODEL..................................................................15 2.3. DRIVING SITUATION AWARENESS AND PERSPECTIVE.........................................................20 2.4. DRIVING TASK AND SENSORY INTERACTION ....................................................................22 CHAPTER 3. COGNITIVE NEEDS IN AUTONOMOUS.....................................................27 3.1. DRIVING BEHAVIOR TRANSFORMATION AND CLUSTER UI..................................................27 3.2. COGNITIVE FRAMEWORK TRANSFORMATION ..................................................................33 CHAPTER 4. USER TESTS ............................................................................................36 4.1. WIZARD OF OZ PROTOTYPING .....................................................................................38 4.2. PILOT TEST 1............................................................................................................40 4.2.1. Experiment Design & Laboratory Setting.................................................40 4.2.2. Persona Scenario & Task Design ..............................................................42 4.2.3. Preparation of Driving situation...............................................................45 4.2.4. Procedure.................................................................................................47 4.2.5. Data Analysis & Insight............................................................................48 4.3. PILOT TEST 2............................................................................................................51 4.3.1. Amendment: Experiment Design & Laboratory Setting ...........................52 4.3.2. Amendment: Task Scenario & Command Cue..........................................54 4.3.3. Amendment: Perform Role and preparation of driving situation ............57 4.3.4. Amendment: Procedure ...........................................................................59 4.3.5. Data Analysis & Insight............................................................................62 4.4. MAIN TEST ..............................................................................................................65 4.4.1. Experiment Design & Laboratory setting .................................................66 4.4.2. Task Design ..............................................................................................69 4.4.3. Procedure.................................................................................................71 4.4.4. Result Analysis & Insight..........................................................................74 CHAPTER 5. UI CONCEPT DEVELOPMENT...................................................................81 5.1. UI DESIGN METHOD..................................................................................................81 5.2. DESIGN PROPOSAL ....................................................................................................84 5.3. USER SCENARIOS ......................................................................................................86 5.3.1 Scenario 1. Time-less: Late for a morning meeting..................................86 5.3.2 Scenario 2.Time-full: Leisure driving on weekends ..................................93 CHAPTER 6. USABILITY TEST ......................................................................................98 6.1. USABILITY TEST GUIDE ...............................................................................................98 6.2. ASSESSMENT USABILITY TEST ..................................................................................100 6.2.1 Test planning........................................................................................100 6.2.2 Laboratory setting................................................................................102 6.2.3 Test conduct and debriefing.................................................................106 6.3. RESULT ANALYSIS ..................................................................................................106 CHAPTER 7. CONCLUSION......................................................................................107 APPENDIX 1...........................................................................................................110 APPENDIX 2...........................................................................................................111 APPENDIX 3...........................................................................................................113 APPENDIX 4...........................................................................................................121 APPENDIX 5...........................................................................................................124 APPENDIX 6...........................................................................................................128 APPENDIX 7...........................................................................................................133 BIBLIOGRAPHY ......................................................................................................136 국문 초록 ............................................................................................................143Maste

    Designing passenger experiences for in-car Mixed Reality

    Get PDF
    In day-to-day life, people spend a considerable amount of their time on the road. People seek to invest travel time for work and well-being through interaction with mobile and multimedia applications on personal devices such as smartphones and tablets. However, for new computing paradigms, such as mobile mixed reality (MR), their usefulness in this everyday transport context, in-car MR remains challenging. When future passengers immerse in three-dimensional virtual environments, they become increasingly disconnected from the cabin space, vehicle motion, and other people around them. This degraded awareness of the real environment endangers the passenger experience on the road, which initially motivates this thesis to question: can immersive technology become useful in the everyday transport context, such as for in-car scenarios? If so, how should we design in-car MR technology to foster passenger access and connectedness to both physical and virtual worlds, ensuring ride safety, comfort, and joy? To this aim, this thesis contributes via three aspects: 1) Understanding passenger use of in-car MR —first, I present a model for in-car MR interaction through user research. As interviews with daily commuters reveal, passengers are concerned with their physical integrity when facing spatial conflicts between borderless virtual environments and the confined cabin space. From this, the model aims to help researchers spatially organize information and how user interfaces vary in the proximity of the user. Additionally, a field experiment reveals contextual feedback about motion sickness when using immersive technology on the road. This helps refine the model and instruct the following experiments. 2) Mixing realities in car rides —second, this thesis explores a series of prototypes and experiments to examine how in-car MR technology can enable passengers to feel present in virtual environments while maintaining awareness of the real environment. The results demonstrate technical solutions for physical integrity and situational awareness by incorporating essential elements of the RE into virtual reality. Empirical evidence provides a set of dimensions into the in-car MR model, guiding the design decisions of mixing realities. 3) Transcending the transport context —third, I extend the model to other everyday contexts beyond transport that share spatial and social constraints, such as the confined and shared living space at home. A literature review consolidates leveraging daily physical objects as haptic feedback for MR interaction across spatial scales. A laboratory experiment discovers how context-aware MR systems that consider physical configurations can support social interaction with copresent others in close shared spaces. These results substantiate the scalability of the in-car MR model to other contexts. Finally, I conclude with a holistic model for mobile MR interaction across everyday contexts, from home to on the road. With my user research, prototypes, empirical evaluation, and model, this thesis paves the way for understanding the future passenger use of immersive technology, addressing today’s technical limitations of MR in mobile interaction, and ultimately fostering mobile users’ ubiquitous access and close connectedness to MR anytime and anywhere in their daily lives.Im modernen Leben verbringen die Menschen einen beträchtlichen Teil ihrer Zeit mit dem täglichen Pendeln. Die Menschen versuchen, die Reisezeit für ihre Arbeit und ihr Wohlbefinden durch die Interaktion mit mobilen und multimedialen Anwendungen auf persönlichen Geräten wie Smartphones und Tablets zu nutzen. Doch für neue Computing-Paradigmen, wie der mobilen Mixed Reality (MR), bleibt ihre Nützlichkeit in diesem alltäglichen Verkehrskontext, der MR im Auto, eine Herausforderung. Wenn künftige Passagiere in dreidimensionale virtuelle Umgebungen eintauchen, werden sie zunehmend von der Kabine, der Fahrzeugbewegung und den Menschen in ihrer Umgebung abgekoppelt. Diese verminderte Wahrnehmung der realen Umgebung gefährdet das Fahrverhalten der Passagiere im Straßenverkehr, was diese Arbeit zunächst zu der Frage motiviert: Können immersive Systeme im alltäglichen Verkehrskontext, z.B. in Fahrzeugszenarien, nützlich werden? Wenn ja, wie sollten wir die MR-Technologie im Auto gestalten, um den Zugang und die Verbindung der Passagiere mit der physischen und der virtuellen Welt zu fördern und dabei Sicherheit, Komfort und Freude an der Fahrt zu gewährleisten? Zu diesem Zweck trägt diese Arbeit zu drei Aspekten bei: 1) Verständnis der Nutzung von MR im Auto durch die Passagiere - Zunächst wird ein Modell für die MR-Interaktion im Auto durch user research vorgestellt. Wie aus Interviews mit täglichen Pendlern hervorgeht, sind die Passagiere um ihre körperliche Unversehrtheit besorgt, wenn sie mit räumlichen Konflikten zwischen grenzenlosen virtuellen Umgebungen und dem begrenzten Kabinenraum konfrontiert werden. Das Modell soll Forschern dabei helfen, Informationen und Benutzerschnittstellen räumlich zu organisieren, die in der Nähe des Benutzers variieren. Darüber hinaus zeigt ein Feldexperiment kontextbezogenes Feedback zur Reisekrankheit bei der Nutzung immersiver Technologien auf der Straße. Dies hilft, das Modell zu verfeinern und die folgenden Experimente zu instruieren. 2) Vermischung von Realitäten bei Autofahrten - Zweitens wird in dieser Arbeit anhand einer Reihe von Prototypen und Experimenten untersucht, wie die MR-Technologie im Auto es den Passagieren ermöglichen kann, sich in virtuellen Umgebungen präsent zu fühlen und gleichzeitig das Bewusstsein für die reale Umgebung zu behalten. Die Ergebnisse zeigen technische Lösungen für räumliche Beschränkungen und Situationsbewusstsein, indem wesentliche Elemente der realen Umgebung in VR integriert werden. Die empirischen Erkenntnisse bringen eine Reihe von Dimensionen in das Modell der MR im Auto ein, die die Designentscheidungen für gemischte Realitäten leiten. 3) Über den Verkehrskontext hinaus - Drittens erweitere ich das Modell auf andere Alltagskontexte jenseits des Verkehrs, in denen räumliche und soziale Zwänge herrschen, wie z.B. in einem begrenzten und gemeinsam genutzten Wohnbereich zu Hause. Eine Literaturrecherche konsolidiert die Nutzung von Alltagsgegenständen als haptisches Feedback für MR-Interaktion über räumliche Skalen hinweg. Ein Laborexperiment zeigt, wie kontextbewusste MR-Systeme, die physische Konfigurationen berücksichtigen, soziale Interaktion mit anderen Personen in engen gemeinsamen Räumen ermöglichen. Diese Ergebnisse belegen die Übertragbarkeit des MR-Modells im Auto auf andere Kontexte. Schließlich schließe ich mit einem ganzheitlichen Modell für mobile MR-Interaktion in alltäglichen Kontexten, von zu Hause bis unterwegs. Mit meiner user research, meinen Prototypen und Evaluierungsexperimenten sowie meinem Modell ebnet diese Dissertation den Weg für das Verständnis der zukünftigen Nutzung immersiver Technologien durch Passagiere, für die Überwindung der heutigen technischen Beschränkungen von MR in der mobilen Interaktion und schließlich für die Förderung des allgegenwärtigen Zugangs und der engen Verbindung der mobilen Nutzer zu MR jederzeit und überall in ihrem täglichen Leben
    corecore