2,072 research outputs found

    Counting Triangles in Large Graphs on GPU

    Full text link
    The clustering coefficient and the transitivity ratio are concepts often used in network analysis, which creates a need for fast practical algorithms for counting triangles in large graphs. Previous research in this area focused on sequential algorithms, MapReduce parallelization, and fast approximations. In this paper we propose a parallel triangle counting algorithm for CUDA GPU. We describe the implementation details necessary to achieve high performance and present the experimental evaluation of our approach. Our algorithm achieves 8 to 15 times speedup over the CPU implementation and is capable of finding 3.8 billion triangles in an 89 million edges graph in less than 10 seconds on the Nvidia Tesla C2050 GPU.Comment: 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW

    Triadic Measures on Graphs: The Power of Wedge Sampling

    Full text link
    Graphs are used to model interactions in a variety of contexts, and there is a growing need to quickly assess the structure of a graph. Some of the most useful graph metrics, especially those measuring social cohesion, are based on triangles. Despite the importance of these triadic measures, associated algorithms can be extremely expensive. We propose a new method based on wedge sampling. This versatile technique allows for the fast and accurate approximation of all current variants of clustering coefficients and enables rapid uniform sampling of the triangles of a graph. Our methods come with provable and practical time-approximation tradeoffs for all computations. We provide extensive results that show our methods are orders of magnitude faster than the state-of-the-art, while providing nearly the accuracy of full enumeration. Our results will enable more wide-scale adoption of triadic measures for analysis of extremely large graphs, as demonstrated on several real-world examples

    Engineering a Distributed-Memory Triangle Counting Algorithm

    Full text link
    Counting triangles in a graph and incident to each vertex is a fundamental and frequently considered task of graph analysis. We consider how to efficiently do this for huge graphs using massively parallel distributed-memory machines. Unsurprisingly, the main issue is to reduce communication between processors. We achieve this by counting locally whenever possible and reducing the amount of information that needs to be sent in order to handle (possible) nonlocal triangles. We also achieve linear memory requirements despite superlinear communication volume by introducing a new asynchronous sparse-all-to-all operation. Furthermore, we dramatically reduce startup overheads by allowing this communication to use indirect routing. Our algorithms scale (at least) up to 32 768 cores and are up to 18 times faster than the previous state of the art.Comment: 11 pages, 8 figures, to be published in 2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS), St. Petersburg, FL, USA, pp. 702-71
    corecore