19,338 research outputs found

    Main Memory Implementations for Binary Grouping

    Full text link
    An increasing number of applications depend on efficient storage and analysis features for XML data. Hence, query optimization and efficient evaluation techniques for the emerging XQuery standard become more and more important. Many XQuery queries require nested expressions. Unnesting them often introduces binary grouping. We introduce several algorithms implementing binary grouping and analyze their time and space complexity. Experiments demonstrate their performance

    Flattening an object algebra to provide performance

    Get PDF
    Algebraic transformation and optimization techniques have been the method of choice in relational query execution, but applying them in object-oriented (OO) DBMSs is difficult due to the complexity of OO query languages. This paper demonstrates that the problem can be simplified by mapping an OO data model to the binary relational model implemented by Monet, a state-of-the-art database kernel. We present a generic mapping scheme to flatten data models and study the case of straightforward OO model. We show how flattening enabled us to implement a query algebra, using only a very limited set of simple operations. The required primitives and query execution strategies are discussed, and their performance is evaluated on the 1-GByte TPC-D (Transaction-processing Performance Council's Benchmark D), showing that our divide-and-conquer approach yields excellent result

    QuickCSG: Fast Arbitrary Boolean Combinations of N Solids

    Get PDF
    QuickCSG computes the result for general N-polyhedron boolean expressions without an intermediate tree of solids. We propose a vertex-centric view of the problem, which simplifies the identification of final geometric contributions, and facilitates its spatial decomposition. The problem is then cast in a single KD-tree exploration, geared toward the result by early pruning of any region of space not contributing to the final surface. We assume strong regularity properties on the input meshes and that they are in general position. This simplifying assumption, in combination with our vertex-centric approach, improves the speed of the approach. Complemented with a task-stealing parallelization, the algorithm achieves breakthrough performance, one to two orders of magnitude speedups with respect to state-of-the-art CPU algorithms, on boolean operations over two to dozens of polyhedra. The algorithm also outperforms GPU implementations with approximate discretizations, while producing an output without redundant facets. Despite the restrictive assumptions on the input, we show the usefulness of QuickCSG for applications with large CSG problems and strong temporal constraints, e.g. modeling for 3D printers, reconstruction from visual hulls and collision detection

    Prospects and limitations of full-text index structures in genome analysis

    Get PDF
    The combination of incessant advances in sequencing technology producing large amounts of data and innovative bioinformatics approaches, designed to cope with this data flood, has led to new interesting results in the life sciences. Given the magnitude of sequence data to be processed, many bioinformatics tools rely on efficient solutions to a variety of complex string problems. These solutions include fast heuristic algorithms and advanced data structures, generally referred to as index structures. Although the importance of index structures is generally known to the bioinformatics community, the design and potency of these data structures, as well as their properties and limitations, are less understood. Moreover, the last decade has seen a boom in the number of variant index structures featuring complex and diverse memory-time trade-offs. This article brings a comprehensive state-of-the-art overview of the most popular index structures and their recently developed variants. Their features, interrelationships, the trade-offs they impose, but also their practical limitations, are explained and compared

    A class of AM-QFT algorithms for power-of-two FFT

    Full text link
    This paper proposes a class of power-of-two FFT (Fast Fourier Transform) algorithms, called AM-QFT algorithms, that contains the improved QFT (Quick Fourier Transform), an algorithm recently published, as a special case. The main idea is to apply the Amplitude Modulation Double Sideband - Suppressed Carrier (AM DSB-SC) to convert odd-indices signals into even-indices signals, and to insert this elaboration into the improved QFT algorithm, substituting the multiplication by secant function. The 8 variants of this class are obtained by re-elaboration of the AM DSB-SC idea, and by means of duality. As a result the 8 variants have both the same computational cost and the same memory requirements than improved QFT. Differently, comparing this class of 8 variants of AM-QFT algorithm with the split-radix 3add/3mul (one of the most performing FFT approach appeared in the literature), we obtain the same number of additions and multiplications, but employing half of the trigonometric constants. This makes the proposed FFT algorithms interesting and useful for fixed-point implementations. Some of these variants show advantages versus the improved QFT. In fact one of this variant slightly enhances the numerical accuracy of improved QFT, while other four variants use trigonometric constants that are faster to compute in `on the fly' implementations

    Low power techniques for video compression

    Get PDF
    This paper gives an overview of low-power techniques proposed in the literature for mobile multimedia and Internet applications. Exploitable aspects are discussed in the behavior of different video compression tools. These power-efficient solutions are then classified by synthesis domain and level of abstraction. As this paper is meant to be a starting point for further research in the area, a lowpower hardware & software co-design methodology is outlined in the end as a possible scenario for video-codec-on-a-chip implementations on future mobile multimedia platforms
    corecore