16 research outputs found

    Trennung und Schätzung der Anzahl von Audiosignalquellen mit Zeit- und Frequenzüberlappung

    Get PDF
    Everyday audio recordings involve mixture signals: music contains a mixture of instruments; in a meeting or conference, there is a mixture of human voices. For these mixtures, automatically separating or estimating the number of sources is a challenging task. A common assumption when processing mixtures in the time-frequency domain is that sources are not fully overlapped. However, in this work we consider some cases where the overlap is severe — for instance, when instruments play the same note (unison) or when many people speak concurrently ("cocktail party") — highlighting the need for new representations and more powerful models. To address the problems of source separation and count estimation, we use conventional signal processing techniques as well as deep neural networks (DNN). We first address the source separation problem for unison instrument mixtures, studying the distinct spectro-temporal modulations caused by vibrato. To exploit these modulations, we developed a method based on time warping, informed by an estimate of the fundamental frequency. For cases where such estimates are not available, we present an unsupervised model, inspired by the way humans group time-varying sources (common fate). This contribution comes with a novel representation that improves separation for overlapped and modulated sources on unison mixtures but also improves vocal and accompaniment separation when used as an input for a DNN model. Then, we focus on estimating the number of sources in a mixture, which is important for real-world scenarios. Our work on count estimation was motivated by a study on how humans can address this task, which lead us to conduct listening experiments, confirming that humans are only able to estimate the number of up to four sources correctly. To answer the question of whether machines can perform similarly, we present a DNN architecture, trained to estimate the number of concurrent speakers. Our results show improvements compared to other methods, and the model even outperformed humans on the same task. In both the source separation and source count estimation tasks, the key contribution of this thesis is the concept of “modulation”, which is important to computationally mimic human performance. Our proposed Common Fate Transform is an adequate representation to disentangle overlapping signals for separation, and an inspection of our DNN count estimation model revealed that it proceeds to find modulation-like intermediate features.Im Alltag sind wir von gemischten Signalen umgeben: Musik besteht aus einer Mischung von Instrumenten; in einem Meeting oder auf einer Konferenz sind wir einer Mischung menschlicher Stimmen ausgesetzt. Für diese Mischungen ist die automatische Quellentrennung oder die Bestimmung der Anzahl an Quellen eine anspruchsvolle Aufgabe. Eine häufige Annahme bei der Verarbeitung von gemischten Signalen im Zeit-Frequenzbereich ist, dass die Quellen sich nicht vollständig überlappen. In dieser Arbeit betrachten wir jedoch einige Fälle, in denen die Überlappung immens ist zum Beispiel, wenn Instrumente den gleichen Ton spielen (unisono) oder wenn viele Menschen gleichzeitig sprechen (Cocktailparty) —, so dass neue Signal-Repräsentationen und leistungsfähigere Modelle notwendig sind. Um die zwei genannten Probleme zu bewältigen, verwenden wir sowohl konventionelle Signalverbeitungsmethoden als auch tiefgehende neuronale Netze (DNN). Wir gehen zunächst auf das Problem der Quellentrennung für Unisono-Instrumentenmischungen ein und untersuchen die speziellen, durch Vibrato ausgelösten, zeitlich-spektralen Modulationen. Um diese Modulationen auszunutzen entwickelten wir eine Methode, die auf Zeitverzerrung basiert und eine Schätzung der Grundfrequenz als zusätzliche Information nutzt. Für Fälle, in denen diese Schätzungen nicht verfügbar sind, stellen wir ein unüberwachtes Modell vor, das inspiriert ist von der Art und Weise, wie Menschen zeitveränderliche Quellen gruppieren (Common Fate). Dieser Beitrag enthält eine neuartige Repräsentation, die die Separierbarkeit für überlappte und modulierte Quellen in Unisono-Mischungen erhöht, aber auch die Trennung in Gesang und Begleitung verbessert, wenn sie in einem DNN-Modell verwendet wird. Im Weiteren beschäftigen wir uns mit der Schätzung der Anzahl von Quellen in einer Mischung, was für reale Szenarien wichtig ist. Unsere Arbeit an der Schätzung der Anzahl war motiviert durch eine Studie, die zeigt, wie wir Menschen diese Aufgabe angehen. Dies hat uns dazu veranlasst, eigene Hörexperimente durchzuführen, die bestätigten, dass Menschen nur in der Lage sind, die Anzahl von bis zu vier Quellen korrekt abzuschätzen. Um nun die Frage zu beantworten, ob Maschinen dies ähnlich gut können, stellen wir eine DNN-Architektur vor, die erlernt hat, die Anzahl der gleichzeitig sprechenden Sprecher zu ermitteln. Die Ergebnisse zeigen Verbesserungen im Vergleich zu anderen Methoden, aber vor allem auch im Vergleich zu menschlichen Hörern. Sowohl bei der Quellentrennung als auch bei der Schätzung der Anzahl an Quellen ist ein Kernbeitrag dieser Arbeit das Konzept der “Modulation”, welches wichtig ist, um die Strategien von Menschen mittels Computern nachzuahmen. Unsere vorgeschlagene Common Fate Transformation ist eine adäquate Darstellung, um die Überlappung von Signalen für die Trennung zugänglich zu machen und eine Inspektion unseres DNN-Zählmodells ergab schließlich, dass sich auch hier modulationsähnliche Merkmale finden lassen

    On the use of U-Net for dominant melody estimation in polyphonic music

    Get PDF
    International audienceEstimation of dominant melody in polyphonic music remains a difficult task, even though promising breakthroughs have been done recently with the introduction of the Harmonic CQT and the use of fully convolutional networks. In this paper, we build upon this idea and describe how U-Net-a neural network originally designed for medical image segmentation-can be used to estimate the dominant melody in polyphonic audio. We propose in particular the use of an original layer-by-layer sequential training method, and show that this method used along with careful training data conditioning improve the results compared to plain convolutional networks

    Fully-Convolutional Network for Pitch Estimation of Speech Signals

    Get PDF
    International audienceThe estimation of fundamental frequency (F0) from audio is a necessary step in many speech processing tasks such as speech synthesis, that require to accurately analyze big datasets, or real-time voice transformations, that require low computation times. New approaches using neural networks have been recently proposed for F0 estimation, outperforming previous approaches in terms of accuracy. The work presented here aims at bringing some more improvements over such CNN-based state-of-the-art approaches, especially when targeting speech data. More specifically, we first propose to use the recent PaN speech synthesis engine in order to generate a high-quality speech database with a reliable ground truth F0 annotation. Then, we propose 3 variants of a new fully-convolutional network (FCN) architecture that are shown to perform better than other similar data-driven methods, with a significantly reduced computational load making them more suitable for real-time purposes

    A Study in Violinist Identification using Short-term Note Features

    Get PDF
    The perception of music expression and emotion are greatly influenced by performer's individual interpretation, thus modelling performer's style is important to music understanding, style transfer, music education and characteristic music generation. This Thesis proposes approaches for modelling and identifying musical instrumentalists, using violinist identification as a case study. In violin performance, vibrato and timbre play important roles in players’ emotional expression, and they are key factors of playing style while execution shows great diversity. To validate that these two factors are effective to model violinists, we design and extract note-level vibrato features and timbre features from isolated concerto music notes, then present a violinist identification method based on the similarity of feature distributions, using single feature as well as fused features. The result shows that vibrato features are helpful for the violinist identification, and some timbre features perform better than vibrato features. In addition, the accuracy obtained from fused features is higher than using any single feature. However, apart from performer, the timbre is also determined by musical instruments, recording conditions and other factors. Furthermore, the common scenario for violinist identification is based on short music clips rather than isolated notes. To solve these two problems, we further examine the method using note-level timbre features to recognize violinists from segmented solo music clips, then use it to identify master players from concerto fragments. The results show that the designed features and method work very well for both types of music. Another experiment is conducted to examine the influence of instrument on the features. Results suggest that the selected timbre features can model performers’ individual playing reasonably and objectively, regardless of the instrument they play. Expressive timing is another key factor to reflect individual play styles. This Thesis develops a novel onset time deviation feature, which is used to model and identify master violinists on concerto fragments data. Results show that it performs better than timbre features on the dataset. To generalise the violinist identification method and further improve the result, deep learning methods are proposed and investigated. We present a transfer learning approach for violinist identification from pre-trained music auto-tagging neural networks and singer identification models. We then transfer pre-trained weights and fine-tune the models using violin datasets and finally obtain violinist identification results. We compare our system with state-of-the-art works, which shows that our model outperforms them using our two datasets

    Modeling High-Dimensional Audio Sequences with Recurrent Neural Networks

    Get PDF
    Cette thèse étudie des modèles de séquences de haute dimension basés sur des réseaux de neurones récurrents (RNN) et leur application à la musique et à la parole. Bien qu'en principe les RNN puissent représenter les dépendances à long terme et la dynamique temporelle complexe propres aux séquences d'intérêt comme la vidéo, l'audio et la langue naturelle, ceux-ci n'ont pas été utilisés à leur plein potentiel depuis leur introduction par Rumelhart et al. (1986a) en raison de la difficulté de les entraîner efficacement par descente de gradient. Récemment, l'application fructueuse de l'optimisation Hessian-free et d'autres techniques d'entraînement avancées ont entraîné la recrudescence de leur utilisation dans plusieurs systèmes de l'état de l'art. Le travail de cette thèse prend part à ce développement. L'idée centrale consiste à exploiter la flexibilité des RNN pour apprendre une description probabiliste de séquences de symboles, c'est-à-dire une information de haut niveau associée aux signaux observés, qui en retour pourra servir d'à priori pour améliorer la précision de la recherche d'information. Par exemple, en modélisant l'évolution de groupes de notes dans la musique polyphonique, d'accords dans une progression harmonique, de phonèmes dans un énoncé oral ou encore de sources individuelles dans un mélange audio, nous pouvons améliorer significativement les méthodes de transcription polyphonique, de reconnaissance d'accords, de reconnaissance de la parole et de séparation de sources audio respectivement. L'application pratique de nos modèles à ces tâches est détaillée dans les quatre derniers articles présentés dans cette thèse. Dans le premier article, nous remplaçons la couche de sortie d'un RNN par des machines de Boltzmann restreintes conditionnelles pour décrire des distributions de sortie multimodales beaucoup plus riches. Dans le deuxième article, nous évaluons et proposons des méthodes avancées pour entraîner les RNN. Dans les quatre derniers articles, nous examinons différentes façons de combiner nos modèles symboliques à des réseaux profonds et à la factorisation matricielle non-négative, notamment par des produits d'experts, des architectures entrée/sortie et des cadres génératifs généralisant les modèles de Markov cachés. Nous proposons et analysons également des méthodes d'inférence efficaces pour ces modèles, telles la recherche vorace chronologique, la recherche en faisceau à haute dimension, la recherche en faisceau élagué et la descente de gradient. Finalement, nous abordons les questions de l'étiquette biaisée, du maître imposant, du lissage temporel, de la régularisation et du pré-entraînement.This thesis studies models of high-dimensional sequences based on recurrent neural networks (RNNs) and their application to music and speech. While in principle RNNs can represent the long-term dependencies and complex temporal dynamics present in real-world sequences such as video, audio and natural language, they have not been used to their full potential since their introduction by Rumelhart et al. (1986a) due to the difficulty to train them efficiently by gradient-based optimization. In recent years, the successful application of Hessian-free optimization and other advanced training techniques motivated an increase of their use in many state-of-the-art systems. The work of this thesis is part of this development. The main idea is to exploit the power of RNNs to learn a probabilistic description of sequences of symbols, i.e. high-level information associated with observed signals, that in turn can be used as a prior to improve the accuracy of information retrieval. For example, by modeling the evolution of note patterns in polyphonic music, chords in a harmonic progression, phones in a spoken utterance, or individual sources in an audio mixture, we can improve significantly the accuracy of polyphonic transcription, chord recognition, speech recognition and audio source separation respectively. The practical application of our models to these tasks is detailed in the last four articles presented in this thesis. In the first article, we replace the output layer of an RNN with conditional restricted Boltzmann machines to describe much richer multimodal output distributions. In the second article, we review and develop advanced techniques to train RNNs. In the last four articles, we explore various ways to combine our symbolic models with deep networks and non-negative matrix factorization algorithms, namely using products of experts, input/output architectures, and generative frameworks that generalize hidden Markov models. We also propose and analyze efficient inference procedures for those models, such as greedy chronological search, high-dimensional beam search, dynamic programming-like pruned beam search and gradient descent. Finally, we explore issues such as label bias, teacher forcing, temporal smoothing, regularization and pre-training

    Masked Conditional Neural Networks for sound classification

    Get PDF
    The remarkable success of deep convolutional neural networks in image-related applications has led to their adoption also for sound processing. Typically the input is a time–frequency representation such as a spectrogram, and in some cases this is treated as a two-dimensional image. However, spectrogram properties are very different to those of natural images. Instead of an object occupying a contiguous region in a natural image, frequencies of a sound are scattered about the frequency axis of a spectrogram in a pattern unique to that particular sound. Applying conventional convolution neural networks has therefore required extensive hand-tuning, and presented the need to find an architecture better suited to the time–frequency properties of audio. We introduce the ConditionaL Neural Network (CLNN)1 and its extension, the Masked ConditionaL Neural Network (MCLNN) designed to exploit the nature of sound in a time–frequency representation. The CLNN is, broadly speaking, linear across frequencies but non-linear across time: it conditions its inference at a particular time based on preceding and succeeding time slices, and the MCLNN use a controlled systematic sparseness that embeds a filterbank-like behavior within the network. Additionally, the MCLNN automates the concurrent exploration of several feature combinations analogous to hand-crafting the optimum combination of features for a recognition task. We have applied the MCLNN to the problem of music genre classification, and environmental sound recognition on several music (Ballroom, GTZAN, ISMIR2004, and Homburg), and environmental sound (Urbansound8K, ESC-10, and ESC-50) datasets. The classification accuracy of the MCLNN surpasses neural networks based architectures including state-of-the-art Convolutional Neural Networks and several hand-crafted attempts
    corecore