3,127 research outputs found

    A Comparative Study of the Second-Order Hydrophobic Moments for Globular Proteins: The Consensus Scale of Hydrophobicity and the CHARMM Partial Atomic Charges

    Get PDF
    In this paper, the second-order hydrophobic moment for fifteen globular proteins in 150 nonhomologous protein chains was performed in a comparative study involving two sets of hydrophobicity: one selected from the consensus scale and the other derived from the CHARMM partial atomic charges. These proteins were divided into three groups, based on their number of residues (N) and the asphericity (ÎŽ). Proteins in Group I were spherical and those in Groups II and III were prolate. The size of the proteins is represented by the mean radius of gyration (Rg ), which follows the Flory scaling law, Rg ∝ NÎœ. The mean value of v was 0.35, which is similar to a polymer chain in a poor solvent. The spatial distributions of the second-order moment for each of the proteins, obtained from the two sets of hydrophobicity, were compared using the Pearson correlation coefficient; the results reveal that there is a strong correlation between the two data sets for each protein structure when the CHARMM partial atomic charges, |qi| ≄ 0.3, assigned for polar atoms, are used. The locations at which these distributions vanish and approach a negative value are at approximately 50% of the percentage of solvent accessibility, indicating that there is a transition point from hydrophobic interior to hydrophilic exterior in the proteins. This may suggest that there is a position for the proteins to determine the residues at exposed sites beyond this range

    Computational studies of biomembrane systems: Theoretical considerations, simulation models, and applications

    Full text link
    This chapter summarizes several approaches combining theory, simulation and experiment that aim for a better understanding of phenomena in lipid bilayers and membrane protein systems, covering topics such as lipid rafts, membrane mediated interactions, attraction between transmembrane proteins, and aggregation in biomembranes leading to large superstructures such as the light harvesting complex of green plants. After a general overview of theoretical considerations and continuum theory of lipid membranes we introduce different options for simulations of biomembrane systems, addressing questions such as: What can be learned from generic models? When is it expedient to go beyond them? And what are the merits and challenges for systematic coarse graining and quasi-atomistic coarse grained models that ensure a certain chemical specificity

    Quantification of Nanomaterials with Spectrally-Resolved Super-Resolution Microscopy

    Get PDF

    Novel Strategies for Model-Building of G Protein-Coupled Receptors

    Get PDF
    The G protein-coupled receptors constitute still the most densely populated proteinfamily encompassing numerous disease-relevant drug targets. Consequently, medicinal chemistry is expected to pursue targets from that protein family in that hits need to be generated and subsequently optimized towards viable clinical candidates for a variety of therapeutic areas. For the purpose of rationalizing structure-activity relationships within such optimization programs, structural information derived from the ligand's as well as the macromolecule's perspective is essential. While it is relatively straightforward to define pharmacophore hypotheses based on comparative modelling of structurally and biologically characterized low-molecular weight ligands, a deeper understanding of the molecular recognition event underlying, remains challenging, since the principally available amount of experimentally derived structural data on GPCRs is extremely scarse when compared to, e.g., soluble enzymes. In this context, the protein modelling methodologies introduced, developed, optimized, and applied in this thesis provide structural models that are capable of assisting in the development of structural hypotheses on ligand-receptor complexes. As such they provide a valuable structural framework not only for a more detailed insight into ligand-GPCR interaction, but also for guiding the design process towards next-generation compounds which should display enhanced affinity. The model building procedure developed in this thesis systematically follows a hierarchical approach, sequentially generating a 1D topology, followed by a 2D topology that is finally converted into a 3D topology. The determination of a 1D topology is based on a compartmentalization of the linear amino acid sequence of a GPCR of interest into the extracellular, intracellular, and transmembrane sequence stretches. The entire chapter 3 of this study elaborates on the strengths and weaknesses of applying automated prediction tools for the purpose of identifying the transmembrane sequence domains. Based on an once derived 1D topology, a type of in-plane projection structure for the seven transmembrane helices can be derived with the aide of calculated vectorial property moments, yielding the 2D topology. Thorough bioinformatics studies revealed that only a consensus approach based on a conceptual combination of different methods employing a carefully made selection of parameter sets gave reliable results, emphasizing the danger to fully automate a GPCR modelling procedure. Chapter 4 describes a procedure to further expand the 2D topological findings into 3D space, exemplified on the human CCK-B receptor protein. This particular GPCR was chosen as the receptor of interest, since an enormous experimentally derived and structurally relevant data-set was available. Within the computational refinement procedure of constructed GPCR models, major emphasis was laid on the explicit treatment of a non-isotropic solvent environment during molecular mechanics (i.e. energy minimization and molecular dynamics simulations) calculations. The majority of simulations was therefore carried out in a tri-phasic solvent box accounting for a central lipid environment, flanked by two aqueous compartments, mimicking the extracellular and cytoplasmic space. Chapter 5 introduces the reference compound set, comprising low-molecular weight compounds modulating CCK receptors, that was used for validation purposes of the generated models of the receptor protein. Chapter 6 describes how the generated model of the CCK-B receptor was subjected to intensive docking studies employing compound series introduced in chapter 5. It turned out that by applying the DRAGHOME methodology viable structural hypotheses on putative receptor-ligand complexes could be generated. Based on the methodology pursued in this thesis a detailed model of the receptor binding site could be devised that accounts for known structure-activity relationships as well as for results obtained by site-directed mutagenesis studies in a qualitative manner. The overall study presented in this thesis is primarily aimed to deliver a feasibility study on generating model structures of GPCRs by a conceptual combination of tailor-made bioinformatics techniques with the toolbox of protein modelling, exemplified on the human CCK-B receptor. The generated structures should be envisioned as models only, not necessarily providing a detailed image of reality. However, consistent models, when verified and refined against experimental data, deliver an extremely useful structural contextual platform on which different scientific disciplines such as medicinal chemistry, molecular biology, and biophysics can effectively communicate

    Ligand-Receptor Interactions

    Full text link
    The formation and dissociation of specific noncovalent interactions between a variety of macromolecules play a crucial role in the function of biological systems. During the last few years, three main lines of research led to a dramatic improvement of our understanding of these important phenomena. First, combination of genetic engineering and X ray cristallography made available a simultaneous knowledg of the precise structure and affinity of series or related ligand-receptor systems differing by a few well-defined atoms. Second, improvement of computer power and simulation techniques allowed extended exploration of the interaction of realistic macromolecules. Third, simultaneous development of a variety of techniques based on atomic force microscopy, hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or flexible transducers yielded direct experimental information of the behavior of single ligand receptor bonds. At the same time, investigation of well defined cellular models raised the interest of biologists to the kinetic and mechanical properties of cell membrane receptors. The aim of this review is to give a description of these advances that benefitted from a largely multidisciplinar approach

    Membrane-mediated interactions

    Full text link
    Interactions mediated by the cell membrane between inclusions, such as membrane proteins or antimicrobial peptides, play important roles in their biological activity. They also constitute a fascinating challenge for physicists, since they test the boundaries of our understanding of self-assembled lipid membranes, which are remarkable examples of two-dimensional complex fluids. Inclusions can couple to various degrees of freedom of the membrane, resulting in different types of interactions. In this chapter, we review the membrane-mediated interactions that arise from direct constraints imposed by inclusions on the shape of the membrane. These effects are generic and do not depend on specific chemical interactions. Hence, they can be studied using coarse-grained soft matter descriptions. We deal with long-range membrane-mediated interactions due to the constraints imposed by inclusions on membrane curvature and on its fluctuations. We also discuss the shorter-range interactions that arise from the constraints on membrane thickness imposed by inclusions presenting a hydrophobic mismatch with the membrane.Comment: 38 pages, 10 figures, pre-submission version. In: Bassereau P., Sens P. (eds) Physics of Biological Membranes. Springer, Cha
    • 

    corecore