4,462 research outputs found

    Transcutaneous Measurement and SpectrumAnalysis of Heart Wall Vibrations

    Get PDF
    科研費報告書収録論文(課題番号:08555096・基盤研究(B)(2)・H8~H9/研究代表者:金井, 浩/心筋の早期診断を可能とする心臓壁微小振動の超音波計測及び解析装置の開発

    Comparison of tri-polar concentric ring electrodes to disc electrodes for decoding real and imaginary finger movements, A

    Get PDF
    2019 Spring.Includes bibliographical references.The electroencephalogram (EEG) is broadly used for diagnosis of brain diseases and research of brain activities. Although the EEG provides a good temporal resolution, it suffers from poor spatial resolution due to the blurring effects of volume conduction and signal-to-noise ratio. Many efforts have been devoted to the development of novel methods that can increase the EEG spatial resolution. The surface Laplacian, which is the second derivative of the surface potential, has been applied to EEG to improve the spatial resolution. Tri-polar concentric ring electrodes (TCREs) have been shown to estimate the surface Laplacian automatically with better spatial resolution than conventional disc electrodes. The aim of this research is to study how well the TCREs can be used to acquire EEG signals to decode real and imaginary finger movements. These EEG signals will be then translated into finger movements commands. We also compare the feasibility of discriminating finger movements from one hand using EEG recorded from TCREs and conventional disc electrodes. Furthermore, we evaluated two movement-related features, temporal EEG data and spectral features, in discriminating individual finger from one hand using non-invasive EEG. To do so, movement-related potentials (MRPs) are measured and analyzed from four TCREs and conventional disc electrodes while 13 subjects performed either motor execution or motor imagery of individual finger movements. The tri-polar-EEG (tEEG) and conventional EEG (cEEG) were recorded from electrodes placed according to the 10-20 International Electrode Positioning System over the motor cortex. Our results show that the TCREs achieved higher spatial resolution than conventional disc electrodes. Moreover, the results show that signals from TCREs generated higher decoding accuracy compared to signals from conventional disc electrodes. The average decoding accuracy of five-class classification for all subjects was of 70.04 ± 7.68% when we used temporal EEG data as feature and classified it using Artificial Neural Networks (ANNs) classifier. In addition, the results show that the TCRE EEG (tEEG) provides approximately a four times enhancement in the signal-to-noise ratio (SNR) compared to disc electrode signals. We also evaluated the interdependency level between neighboring electrodes from tri-polar, disc, and disc with Hjorth's Laplacian method in time and frequency domains by calculating the mutual information (MI) and coherence. The MRP signals recorded with the TCRE system have significantly less mutual information (MI) between electrodes than the conventional disc electrode system and disc electrodes with Hjorth's Laplacian method. Also, the results show that the mean coherence between neighboring tri-polar electrodes was found to be significantly smaller than disc electrode and disc electrode with Hjorth's method, especially at higher frequencies. This lower coherence in the high frequency band between neighboring tri polar electrodes suggests that the TCREs may record a more localized neuronal activity. The successful decoding of finger movements can provide extra degrees of freedom to drive brain computer interface (BCI) applications, especially for neurorehabilitation

    Lower left temporal-frontal connectivity characterizes expert and accurate performance: High-alpha T7-Fz connectivity as a marker of conscious processing during movement

    Get PDF
    The Theory of Reinvestment argues that conscious processing can impair motor performance. The present study tested the utility of left temporal-frontal cortical connectivity as a neurophysiological marker of movement specific conscious processing. Expert and novice golfers completed putts while temporal-frontal connectivity was computed using high alpha Inter Site Phase Clustering (ISPC) and then analyzed as a function of experience (experts versus novices), performance (holed versus missed putts), and pressure (low versus high). Existing evidence shows that left temporal to frontal connectivity is related to dispositional conscious processing and is sensitive to the amount of declarative knowledge acquired during learning. We found that T7-Fz ISPC, but not T8-Fz ISPC, was lower in experts than novices, and lower when putts were holed than missed. Accordingly, our findings provide additional evidence that communication between verbal/language and motor areas of the brain during preparation for action and its execution is associated with poor motor performance. Our findings validate high-alpha left temporal-frontal connectivity as a neurophysiological correlate of movement specific conscious processin

    Data-driven multivariate and multiscale methods for brain computer interface

    Get PDF
    This thesis focuses on the development of data-driven multivariate and multiscale methods for brain computer interface (BCI) systems. The electroencephalogram (EEG), the most convenient means to measure neurophysiological activity due to its noninvasive nature, is mainly considered. The nonlinearity and nonstationarity inherent in EEG and its multichannel recording nature require a new set of data-driven multivariate techniques to estimate more accurately features for enhanced BCI operation. Also, a long term goal is to enable an alternative EEG recording strategy for achieving long-term and portable monitoring. Empirical mode decomposition (EMD) and local mean decomposition (LMD), fully data-driven adaptive tools, are considered to decompose the nonlinear and nonstationary EEG signal into a set of components which are highly localised in time and frequency. It is shown that the complex and multivariate extensions of EMD, which can exploit common oscillatory modes within multivariate (multichannel) data, can be used to accurately estimate and compare the amplitude and phase information among multiple sources, a key for the feature extraction of BCI system. A complex extension of local mean decomposition is also introduced and its operation is illustrated on two channel neuronal spike streams. Common spatial pattern (CSP), a standard feature extraction technique for BCI application, is also extended to complex domain using the augmented complex statistics. Depending on the circularity/noncircularity of a complex signal, one of the complex CSP algorithms can be chosen to produce the best classification performance between two different EEG classes. Using these complex and multivariate algorithms, two cognitive brain studies are investigated for more natural and intuitive design of advanced BCI systems. Firstly, a Yarbus-style auditory selective attention experiment is introduced to measure the user attention to a sound source among a mixture of sound stimuli, which is aimed at improving the usefulness of hearing instruments such as hearing aid. Secondly, emotion experiments elicited by taste and taste recall are examined to determine the pleasure and displeasure of a food for the implementation of affective computing. The separation between two emotional responses is examined using real and complex-valued common spatial pattern methods. Finally, we introduce a novel approach to brain monitoring based on EEG recordings from within the ear canal, embedded on a custom made hearing aid earplug. The new platform promises the possibility of both short- and long-term continuous use for standard brain monitoring and interfacing applications

    Identifying Plant and Feedback in Human Posture Control

    Get PDF
    Human upright bipedal stance is a classic example of a control system consisting of a plant (i.e., the physical body and its actuators) and feedback (i.e., neural control) operating continuously in a closed loop. Determining the mechanistic basis of behavior in a closed loop control system is problematic because experimental manipulations or deficits due to trauma/injury influence all parts of the loop. Moreover, experimental techniques to open the loop (e.g., isolate the plant) are not viable because bipedal upright stance is not possible without feedback. The goal of the proposed study is to use a technique called closed loop system identification (CLSI) to investigate properties of the plant and feedback separately. Human upright stance has typically been approximated as a single-joint inverted pendulum, simplifying not only the control of a multi-linked body but also how sensory information is processed relative to body dynamics. However, a recent study showed that a single-joint approximation is inadequate. Trunk and leg segments are in-phase at frequencies below 1 Hz of body sway and simultaneously anti-phase at frequencies above 1 Hz during quiet stance. My dissertation studies have investigated the coordination between the leg and trunk segments and how sensory information is processed relative to that coordination. For example, additional sensory information provided through visual or light touch information led to a change of the in-phase pattern but not the anti-phase pattern, indicating that the anti-phase pattern may not be neurally controlled, but more a function of biomechanical properties of a two-segment body. In a subsequent study, I probed whether an internal model of the body processes visual information relative to a single or double-linked body. The results suggested a simple control strategy that processes sensory information relative to a single-joint internal model providing further evidence that the anti-phase pattern is biomechanically driven. These studies suggest potential mechanisms but cannot rule out alternative hypotheses because the source of behavioral changes can be attributed to properties of the plant and/or feedback. Here I adopt the CLSI approach using perturbations to probe separate processes within the postural control loop. Mechanical perturbations introduce sway as an input to the feedback, which in turn generates muscle activity as an output. Visual perturbations elicit muscle activity (a motor command) as an input to the plant, which then triggers body sway as an output. Mappings of muscle activity to body sway and body sway to muscle activity are used to identify properties of the plant and feedback, respectively. The results suggest that feedback compensates for the low-pass properties of the plant, except at higher frequencies. An optimal control model minimizing the amount of muscle activation suggests that the mechanism underlying this lack of compensation may be due to an uncompensated time delay. These techniques have the potential for more precise identification of the source of deficits in the postural control loop, leading to improved rehabilitation techniques and treatment of balance deficits, which currently contributes to 40% of nursing home admissions and costs the US health care system over $20B per year

    Neurobehavioral Strategies of Skill Acquisition in Left and Right Hand Dominant Individuals

    Get PDF
    The brain consists of vast networks of connected pathways communicating through synchronized electrochemical activity propagated along fiber tracts. The current understanding is that the brain has a modular organization where regions of specialized processes are dynamically coupled through long-range projections of dense axonal networks connecting spatially distinct regions enabling signal transfer necessary for all complex thought and behavior, including regulation of movement. The central objective of the dissertation was to understand how sensorimotor information is integrated, allowing for adaptable motor behavior and skill acquisition in the left-and right-hand dominant populations. To this end participants, of both left- and right-hand dominance, repeatedly completed a visually guided, force matching task while neurobiological and neurobehavioral outcome measurements were continuously recorded via EEG and EMG. Functional connectivity and graph theoretical measurements were derived from EEG. Cortico-cortical coherence patterns were used to infer neurostrategic discrepancies employed in the execution of a motor task for each population. EEG activity was also correlated with neuromuscular activity from EMG to calculate cortico-muscular connectivity. Neurological patterns and corresponding behavioral changes were used to express how hand dominance influenced the developing motor plan, thereby increasing understanding of the sensorimotor integration process. The cumulative findings indicated fundamental differences in how left- and right-hand dominant populations interact with the world. The right-hand dominant group was found to rely on visual information to inform motor behavior where the left-hand dominant group used visual information to update motor behavior. The left-hand group was found to have a more versatile motor plan, adaptable to both dominant, nondominant, and bimanual tasks. Compared to the right-hand group it might be said that they were more successful in encoding the task, however behaviorally they performed the same. The implications of the findings are relevant to both clinical and performance applications providing insight as to potential alternative methods of information integration. The inclusion of the left-hand dominant population in the growing conceptualization of the brain will generate a more complete, stable, and accurate understanding of our complex biology
    corecore