182 research outputs found

    DUAL-MODALITY (NEUTRON AND X-RAY) IMAGING FOR CHARACTERIZATION OF PARTIALLY SATURATED GRANULAR MATERIALS AND FLOW THROUGH POROUS MEDIA

    Get PDF
    Problems involving mechanics of partially saturated soil and physics of flow through porous media are complex and largely unresolved based on using continuum approach. Recent advances in radiation based imaging techniques provide unique access to simultaneously observe continuum scale response while probing corresponding microstructure for developing predictive science and engineering tools in place of phenomenological approach used to date. Recent developments with X-ray/Synchrotron and neutron imaging techniques provided tools to visualize the interior of soil specimen at pore/grain level. X-ray and neutron radiation often presents complementary contrast for given condensed matter in the images due to different fundamental interaction mechanisms. While X-rays mainly interact with the electron clouds, neutrons directly interact with the nucleus of an atom. The dual-modal contrasts are well suited for probing the three phases (silica, air and water) of partially saturated sand since neutrons provide high penetration through large sample size and are very sensitive to water and X-rays of high energy can penetrate moderate sample sizes and clearly show the particle and void phases. Both neutron and X-ray imaging techniques are used to study microstructure of partially saturated compacted sand and water flow behavior through sand with different initial structures. Water distribution in compacted sand with different water contents for different grain shapes of sand was visualized with relatively coarse resolution neutron radiographs and tomograms. Dual-modal contrast of partially saturated sand was presented by using high spatial resolution neutron and X-ray imaging. Advanced image registration technique was used to combine the dual modality data for a more complete quantitative analysis. Quantitative analysis such as grain size distribution, pore size distribution, coordination number, and water saturation along the height were obtained from the image data. Predictive simulations were performed to obtain capillary pressure – saturation curves and simulated two fluid phase (water and air) distribution based image data. In-situ water flow experiments were performed to investigate the effect of initial microstructure. Flow patterns for dense and loose states of Ottawa sand specimens were compared. Flow patterns and water distribution of dense Ottawa and Q-ROK sand specimens was visualized with high resolution neutron and X-ray image data

    Experimental demonstration of an isotope-sensitive warhead verification technique using nuclear resonance fluorescence

    Full text link
    Future nuclear arms reduction efforts will require technologies to verify that warheads slated for dismantlement are authentic without revealing any sensitive weapons design information to international inspectors. Despite several decades of research, no technology has met these requirements simultaneously. Recent work by Kemp et al. [Kemp RS, Danagoulian A, Macdonald RR, Vavrek JR (2016) Proc Natl Acad Sci USA 113:8618--8623] has produced a novel physical cryptographic verification protocol that approaches this treaty verification problem by exploiting the isotope-specific nature of nuclear resonance fluorescence (NRF) measurements to verify the authenticity of a warhead. To protect sensitive information, the NRF signal from the warhead is convolved with that of an encryption foil that contains key warhead isotopes in amounts unknown to the inspector. The convolved spectrum from a candidate warhead is statistically compared against that from an authenticated template warhead to determine whether the candidate itself is authentic. Here we report on recent proof-of-concept warhead verification experiments conducted at the Massachusetts Institute of Technology. Using high-purity germanium (HPGe) detectors, we measured NRF spectra from the interrogation of proxy 'genuine' and 'hoax' objects by a 2.52 MeV endpoint bremsstrahlung beam. The observed differences in NRF intensities near 2.2 MeV indicate that the physical cryptographic protocol can distinguish between proxy genuine and hoax objects with high confidence in realistic measurement times.Comment: 38 pages, 19 figures; revised for peer review and copy editing; addition to SI for realistic scenario projections; minor length reduction for journal requirement

    Fundamental Deformation Micromechanics in a Zircaloy-4 Alloy and the Hydrogen Effects on its Microstructure, Internal Stresses, and Fatigue Behavior

    Get PDF
    Zircaloy-4 alloys, polycrystalline zirconium alloys, are extensively used in the nuclear industry. During the service in the reactor, these alloys absorb hydrogen, leading to formation of zirconium hydrides, which may be enhanced by the stress field around a crack tip. In order to investigate these phenomena in a Zircaloy-4 alloy, the effect of internal stresses on the hydride precipitation and the subsequent influence on the fatigue behavior has been studied. Firstly, the deformation systems responsible for the polycrystalline plasticity at the grain level, in a hexagonal-close-packed, coarse-grained, and random-textured Zircaloy-4 alloy are considered. The evolution of internal strains was measured in-situ, using neutron diffraction, during uniaxial tensile loading up to 7% strain. The macroscopic stress-strain curve and the intergranular (hkil-specific) strain development, parallel and perpendicular to the loading direction, are measured. Then, a new elastoplastic self-consistent (EPSC) modeling scheme is employed to simulate the experimental results. The model shows a good agreement with the measured data. Secondly, the hydride phase formation and its influence on fatigue crack growth in Zircaloy-4 alloy are investigated. The microstructure and fatigue behavior of the Zircaloy alloy in the as-received condition is shown. Then, the formation and distribution of hydride phase in the alloy, and its effect on microstructure and the fatigue crack propagation rates is discussed. The residual lattice strain profile ahead of a fatigue crack has been also measured using neutron diffraction. The combined effect of residual strain and hydride precipitation on the fatigue behavior is presented and discussed. In addition, the zirconium lattice strains evolution under applied loads of 900, 1,800, and 2,700 N in the presence of hydrides is studied, and compared with the as-received condition. Finally, we report the experimental results from neutron incoherent scattering and neutron radiography studies on hydrogen charged Zircaloy-4 specimens. Future work is planned to study the kinetics of hydride formation under applied load, using neutron diffraction and in-situ hydrogen charging

    Study of high-energy gamma-ray imaging detectors for fast neutron analysis

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 1999.Includes bibliographical references (leaves 79-80).by Gongyin Chen.S.M

    A Compact Neutron Scatter Camera Using Optical Coded-Aperture Imaging

    Get PDF
    The detection and localization of fast neutron resources is an important capability for a number of nuclear security areas such as emergency response and arms control treaty verification. Neutron scatter cameras are one technology that can be used to accomplish this task, but current instruments tend to be large (meter scale) and not portable. Using optical coded-aperture imaging, fast plastic scintillator, and fast photodetectors that were sensitive to single photons, a portable neutron scatter camera was designed and simulated. The design was optimized, an experimental prototype was constructed, and neutron imaging was demonstrated with a tagged 252Cf source in the lab

    Energy-selective neutron imaging for materials science

    Get PDF
    Common neutron imaging techniques study the attenuation of a neutron beam penetrating a sample of interest. The recorded radiograph shows a contrast depending on traversed material and its thickness. Tomography allows separating both and obtaining 3D spatial information about the material distribution, solving problems in numerous fields ranging from virtually separating fossils from surrounding rock to water management in fuel cells. It is nowadays routinely performed at PSI¿s neutron imaging facilities. Energy-selective neutron imaging studies the wavelength-dependency of the cross-section by using a beam of reduced wavelength bandwidth instead of averaging out the cross-section over the incident beam spectrum. The range of observed contrasts/image information is than extended and can largely be understood in the context of the Bragg law. Different types of monochromator (mechanical neutron velocity selector, double crystal monochromator, filter materials) are characterized for use in neutron imaging. In polycrystalline samples, sharp Bragg edges are observed as coherent elastic scattering at the (hkl) plane can occur for all wavelengths up to 2dhkl, after which a sharp increase in transmission intensity is observed. Much like diffraction peaks, they contain information on e.g. crystal phase or projected strain. The absence of coherent elastic scattering past the last Bragg edge (Bragg cut-off) allows for quantification. In samples with few grains or even single crystals, all orientations w.r.t. the beam are no longer present and rather than Bragg edges, the cross section now exhibits distinct peaks, the ensemble of which holds information on the crystallite¿s phase, orientation and shape. A spatial variation in contrast appears across the sample, between those grains fulfilling the Bragg condition ¿ scattering and decreasing the transmitted beam intensity ¿ and those that do not. After initial qualitative assessments, recent advances on the quantitative grain orientation mapping are made based on time-of-flight measurements of high energy resolution recorded at the ISIS pulsed neutron source. But where do these scattered neutrons go to? A new set-up was developed to permit simultaneous transmission and diffractive neutron imaging. Capturing the neutrons diffracted by a grain also yields a projection of that grain, with the position on the detector indicative of the orientation. These projections can in turn be used for algebraic reconstruction, which yields a grain volume as well. After feasibility studies on an iron single crystal cube the recent push towards polycrystalline samples will is illustrated with a neutron diffraction contrast tomography (nDCT) of a coarse-grained aluminium strain sample

    The Development of a Parameterized Scatter Removal Algorithm for Nuclear Materials Identification System Imaging

    Get PDF
    This dissertation presents a novel method for removing scattering effects from Nuclear Materials Identification System (NMIS) imaging. The NMIS uses fast neutron radiography to generate images of the internal structure of objects non-intrusively. If the correct attenuation through the object is measured, the positions and macroscopic cross-sections of features inside the object can be determined. The cross sections can then be used to identify the materials and a 3D map of the interior of the object can be reconstructed. Unfortunately, the measured attenuation values are always too low because scattered neutrons contribute to the unattenuated neutron signal. Previous efforts to remove the scatter from NMIS imaging have focused on minimizing the fraction of scattered neutrons which are misidentified as directly transmitted by electronically collimating and time tagging the source neutrons. The parameterized scatter removal algorithm (PSRA) approaches the problem from an entirely new direction by using Monte Carlo simulations to estimate the point scatter functions (PScFs) produced by neutrons scattering in the object. PScFs have been used to remove scattering successfully in other applications, but only with simple 2D detector models. This work represents the first time PScFs have ever been applied to an imaging detector geometry as complicated as the NMIS. By fitting the PScFs using a Gaussian function, they can be parameterized and the proper scatter for a given problem can be removed without the need for rerunning the simulations each time. In order to model the PScFs, an entirely new method for simulating NMIS measurements was developed for this work. The development of the new models and the codes required to simulate them are presented in detail. The PSRA was used on several simulated and experimental measurements and chi-squared goodness of fit tests were used to compare the corrected values to the ideal values that would be expected with no scattering. Using the PSRA resulted in an improvement of the chi-squared test by a factor of 60 or more when applied to simple homogeneous objects
    corecore