127 research outputs found

    Transients in Power Systems

    Get PDF
    Power system engineering largely focuses on steady state analysis. The main areas of power system engineering are power flow studies and fault studies - both steady state technologies. But the world is largely transient, and power systems are always subject to time varying and short lived signals. This technical report concerns several important topics in transient analyses of power systems. The leading chapter deals with a new analytical tool-wavelets-for power system transients. Flicker and electric are furnace transients are discussed in Chapters I1 and IV. Chapter 111 deals with transients from shunt capacitor switching. The concluding chapters deal with transformer inrush current and non simultaneous pole closures of circuit breakers. This report was prepared by the students in EE532 at Purdue University. When I first came to Purdue in 1965, Professor El-Abiad was asking for student term projects which were turned into technical reports. I have \u27borrowed\u27 this idea and for many years we have produced technical reports from the power systems courses. The students get practice in writing reports, and the reader is able to get an idea of the coverage of our courses. I think that the students have done a good job on the subject of transients in power systems

    A New Method for Offline Compensation of Phase Discrepancy in Measuring the Core Loss With Rectangular Voltage

    Get PDF

    Data-driven Protection of Transformers, Phase Angle Regulators, and Transmission Lines in Interconnected Power Systems

    Get PDF
    This dissertation highlights the growing interest in and adoption of machine learning approaches for fault detection in modern electric power grids. Once a fault has occurred, it must be identified quickly and a variety of preventative steps must be taken to remove or insulate it. As a result, detecting, locating, and classifying faults early and accurately can improve safety and dependability while reducing downtime and hardware damage. Machine learning-based solutions and tools to carry out effective data processing and analysis to aid power system operations and decision-making are becoming preeminent with better system condition awareness and data availability. Power transformers, Phase Shift Transformers or Phase Angle Regulators, and transmission lines are critical components in power systems, and ensuring their safety is a primary issue. Differential relays are commonly employed to protect transformers, whereas distance relays are utilized to protect transmission lines. Magnetizing inrush, overexcitation, and current transformer saturation make transformer protection a challenge. Furthermore, non-standard phase shift, series core saturation, low turn-to-turn, and turn-to-ground fault currents are non-traditional problems associated with Phase Angle Regulators. Faults during symmetrical power swings and unstable power swings may cause mal-operation of distance relays, and unintentional and uncontrolled islanding. The distance relays also mal-operate for transmission lines connected to type-3 wind farms. The conventional protection techniques would no longer be adequate to address the above-mentioned challenges due to their limitations in handling and analyzing the massive amount of data, limited generalizability of conventional models, incapability to model non-linear systems, etc. These limitations of conventional differential and distance protection methods bring forward the motivation of using machine learning techniques in addressing various protection challenges. The power transformers and Phase Angle Regulators are modeled to simulate and analyze the transients accurately. Appropriate time and frequency domain features are selected using different selection algorithms to train the machine learning algorithms. The boosting algorithms outperformed the other classifiers for detection of faults with balanced accuracies of above 99% and computational time of about one and a half cycles. The case studies on transmission lines show that the developed methods distinguish power swings and faults, and determine the correct fault zone. The proposed data-driven protection algorithms can work together with conventional differential and distance relays and offer supervisory control over their operation and thus improve the dependability and security of protection systems

    Modeling and simulation of magnetic components in electric circuits

    No full text
    This thesis demonstrates how by using a variety of model constructions and parameter extraction techniques, a range of magnetic component models can be developed for a wide range of application areas, with different levels of accuracy appropriate for the simulation required. Novel parameter extraction and model optimization methods are developed, including the innovative use of Genetic Algorithms and Metrics, to ensure the accuracy of the material models used. Multiple domain modeling, including the magnetic, thermal and magnetic aspects are applied in integrated simulations to ensure correct and complete dynamic behaviour under a range of environmental conditions. Improvements to the original Jiles-Atherton theory to more accurately model loop closure and dynamic thermal behaviour are proposed, developed and tested against measured results. Magnetic Component modeling techniques are reviewed and applied in practical examples to evaluate the effectiveness of lumped models, 1D and 2D Finite Element Analysis models and coupling Finite Element Analysis with Circuit Simulation. An original approach, linking SPICE with a Finite Element Analysis solver is presented and evaluated. Practical test cases illustrate the effectiveness of the models used in a variety of contexts. A Passive Fault Current Limiter (FCL) was investigated using a saturable inductor with a magnet offset, and the comparison between measured and simulated results allows accurate prediction of the behaviour of the device. A series of broadband hybrid transformers for ADSL were built, tested, modeled and simulated. Results show clearly how the Total Harmonic Distortion (THD), Inter Modulation Distortion (IMD) and Insertion Loss (IL) can be accurately predicted using simulation.A new implementation of ADSL transformers using a planar magnetic structure is presented, with results presented that compare favourably with current wire wound techniques. The inclusion of transformer models in complete ADSL hybrid simulations demonstrate the effectiveness of the models in the context of a complete electrical system in predicting the overall circuit performance

    Harmonics in transmission power systems

    Get PDF

    Impact of Geomagnetically Induced Currents on Power Transformers

    Get PDF
    This thesis deals with the impact of Geomagnetically Induced Current (GIC) on power transformers in electrical power systems. A simulator to calculate the flows of GIC in an electrical power network, based on an assumed or measured induced geoelectric potential is proposed. This simulator includes all needed mapping techniques to handle a system that cover a large geographical area. A correlation between GIC and the reactive power absorbed in the core of the saturated transformer is proposed. That correlation is used to estimate GIC in a transformer utilizing existing reactive power measuring infrastructure within the electrical grid without the need for dedicated measurement equipment. This technique is validated by simulations with electromagnetic transients software, laboratory work and through data recorded during a GIC event on the Hydro One network. The slope correlating reactive power absorption to GIC from an electromagnetic transient model of the transformer may be used to predict GIC levels in the actual transformers. The application of the technique correlating GIC with reactive power absorption is examined on a segment of a real 500 kV power transmission system. This technique allows GIC to be taken into account during load flow studies. Additionally, some benefits of increased visibility of GIC in the system are shown. A method to determine the frequency and magnitude of the harmonic currents generated by a saturated transformer is also proposed. It is expected that studies conducted in this thesis will be of value to utilities like Hydro One in planning mitigation measures against GICs

    Hybrid construction of a 10MHz DC-DC converter for distributed power systems

    Get PDF
    Thesis (Elec. E.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1989.Includes bibliographical references (leaves 204-208).by Brett Andrew Miwa.Elec.E

    Hughes electrical and electronic technology

    Get PDF
    10th edition, 200

    The manufacture and characterisation of microscale magnetic components.

    Get PDF
    Abstract unavailable please refer to PD
    • 

    corecore