47 research outputs found

    Micro/nanoscale magnetic robots for biomedical applications

    Get PDF
    Magnetic small-scale robots are devices of great potential for the biomedical field because of the several benefits of this method of actuation. Recent work on the development of these devices has seen tremendous innovation and refinement toward ​improved performance for potential clinical applications. This review briefly details recent advancements in small-scale robots used for biomedical applications, covering their design, fabrication, applications, and demonstration of ability, and identifies the gap in studies and the difficulties that have persisted in the optimization of the use of these devices. In addition, alternative biomedical applications are also suggested for some of the technologies that show potential for other functions. This study concludes that although the field of small-scale robot research is highly innovative ​there is need for more concerted efforts to improve functionality and reliability of these devices particularly in clinical applications. Finally, further suggestions are made toward ​the achievement of commercialization for these devices

    Design, Actuation, and Functionalization of Untethered Soft Magnetic Robots with Life-Like Motions: A Review

    Full text link
    Soft robots have demonstrated superior flexibility and functionality than conventional rigid robots. These versatile devices can respond to a wide range of external stimuli (including light, magnetic field, heat, electric field, etc.), and can perform sophisticated tasks. Notably, soft magnetic robots exhibit unparalleled advantages among numerous soft robots (such as untethered control, rapid response, and high safety), and have made remarkable progress in small-scale manipulation tasks and biomedical applications. Despite the promising potential, soft magnetic robots are still in their infancy and require significant advancements in terms of fabrication, design principles, and functional development to be viable for real-world applications. Recent progress shows that bionics can serve as an effective tool for developing soft robots. In light of this, the review is presented with two main goals: (i) exploring how innovative bioinspired strategies can revolutionize the design and actuation of soft magnetic robots to realize various life-like motions; (ii) examining how these bionic systems could benefit practical applications in small-scale solid/liquid manipulation and therapeutic/diagnostic-related biomedical fields

    Magnetically Driven Micro and Nanorobots

    Get PDF
    Manipulation and navigation of micro and nanoswimmers in different fluid environments can be achieved by chemicals, external fields, or even motile cells. Many researchers have selected magnetic fields as the active external actuation source based on the advantageous features of this actuation strategy such as remote and spatiotemporal control, fuel-free, high degree of reconfigurability, programmability, recyclability, and versatility. This review introduces fundamental concepts and advantages of magnetic micro/nanorobots (termed here as "MagRobots") as well as basic knowledge of magnetic fields and magnetic materials, setups for magnetic manipulation, magnetic field configurations, and symmetry-breaking strategies for effective movement. These concepts are discussed to describe the interactions between micro/nanorobots and magnetic fields. Actuation mechanisms of flagella-inspired MagRobots (i.e., corkscrew-like motion and traveling-wave locomotion/ciliary stroke motion) and surface walkers (i.e., surface-assisted motion), applications of magnetic fields in other propulsion approaches, and magnetic stimulation of micro/nanorobots beyond motion are provided followed by fabrication techniques for (quasi)spherical, helical, flexible, wire-like, and biohybrid MagRobots. Applications of MagRobots in targeted drug/gene delivery, cell manipulation, minimally invasive surgery, biopsy, biofilm disruption/eradication, imaging-guided delivery/therapy/surgery, pollution removal for environmental remediation, and (bio)sensing are also reviewed. Finally, current challenges and future perspectives for the development of magnetically powered miniaturized motors are discussed

    MicroBioRobots for Single Cell Manipulation

    Get PDF
    One of the great challenges in nano and micro scale science and engineering is the independent manipulation of biological cells and small man-made objects with active sensing. For such biomedical applications as single cell manipulation, telemetry, and localized targeted delivery of chemicals, it is important to fabricate microstructures that can be powered and controlled without a tether in fluidic environments. These microstructures can be used to develop microrobots that have the potential to make existing therapeutic and diagnostic procedures less invasive. Actuation can be realized using various different organic and inorganic methods. Previous studies explored different forms of actuation and control with microorganisms. Bacteria, in particular, offer several advantages as controllable micro actuators: they draw chemical energy directly from their environment, they are genetically modifiable, and they are scalable and configurable in the sense that any number of bacteria can be selectively patterned. Additionally, the study of bacteria inspires inorganic schemes of actuation and control. For these reasons, we chose to employ bacteria while controlling their motility using optical and electrical stimuli. In the first part of the thesis, we demonstrate a bio-integrated approach by introducing MicroBioRobots (MBRs). MBRs are negative photosensitive epoxy (SU8) microfabricated structures with typical feature sizes ranging from 1-100 ÎŒm coated with a monolayer of the swarming Serratia marcescens. The adherent bacterial cells naturally coordinate to propel the microstructures in fluidic environments, which we call Self-Actuation. First, we demonstrate the control of MBRs using self-actuation, DC electric fields and ultra-violet radiation and develop an experimentally-validated mathematical model for the MBRs. This model allows us to to steer the MBR to any position and orientation in a planar micro channel using visual feedback and an inverted microscope. Examples of sub-micron scale transport and assembly as well as computer-based closed-loop control of MBRs are presented. We demonstrate experimentally that vision-based feedback control allows a four-electrode experimental device to steer MBRs along arbitrary paths with micrometer precision. At each time instant, the system identifies the current location of the robot, a control algorithm determines the power supply voltages that will move the charged robot from its current location toward its next desired position, and the necessary electric field is then created. Second, we develop biosensors for the MBRs. Microscopic devices with sensing capabilities could significantly improve single cell analysis, especially in high-resolution detection of patterns of chemicals released from cells in vitro. Two different types of sensing mechanisms are employed. The first method is based on harnessing bacterial power, and in the second method we use genetically engineered bacteria. The small size of the devices gives them access to individual cells, and their large numbers permit simultaneous monitoring of many cells. In the second part, we describe the construction and operation of truly micron-sized, biocompatible ferromagnetic micro transporters driven by external magnetic fields capable of exerting forces at the pico Newton scale. We develop micro transporters using a simple, single step micro fabrication technique that allows us to produce large numbers in the same step. We also fabricate microgels to deliver drugs. We demonstrate that the micro transporters can be navigated to separate single cells with micron-size precision and localize microgels without disturbing the local environment

    Advances in colloidal manipulation and transport via hydrodynamic interactions

    Get PDF
    In this review article, we highlight many recent advances in the field of micromanipulation of colloidal particles using hydrodynamic interactions (HIs), namely solvent mediated long-range interactions. At the micrsocale, the hydrodynamic laws are time reversible and the flow becomes laminar, features that allow precise manipulation and control of colloidal matter. We focus on different strategies where externally operated microstructures generate local flow fields that induce the advection and motion of the surrounding components. In addition, we review cases where the induced flow gives rise to hydrodynamic bound states that may synchronize during the process, a phenomenon essential in different systems such as those that exhibit self-assembly and swarming

    Bio-inspired Magnetic Systems: Controlled Swimming, Fluid Pumps, and Collective Behaviour

    Get PDF
    This thesis details the original experimental investigations of magnetically actuated and controlled microscopic systems enabling a range of actions at low Reynolds number. From millimetre-robots and self-propelled swimmers to microfluidic and lab-on-a-chip technology applications. The main theme throughout the thesis is that the systems reply on the interactions between magnetic and elastic components. Scientists often take inspiration from nature for many aspects of science. Millimetre to micrometre machines are no exception to this. Nature demonstrates how soft materials can be used to deform in a manner to create actuation at the microscale in biological environments. Nature also shows the effectiveness of using beating tails known as flagella and the apparent enhancements in flow speeds of collective motion. To begin with, a swimmer comprised of two ferromagnetic particles coupled together with an elastic link (the two-ferromagnetic particle swimmer), was fabricated. The system was created to mimic the swimming mechanism seen by eukaryotic cells, in which these cells rely on morphological changes which allows them to propel resulting in approximate speeds of up to 2 body lengths per second. The aim of this system was to create a net motion and control the direction of propagation by manipulating the external magnetic field parameters. It was shown that the direction of swimming has a dependence on both the frequency and amplitude of the applied external magnetic field. A key factor discovered was that the influence of a small bias field, in this case, the Earth’s magnetic field (100 orders of magnitude smaller than the external magnetic field) resulted in robust control over the speed (resulting in typical swimming speeds of 4 body lengths per second) and direction of propulsion. Following this work, swimmers with a hard ferromagnetic head attached to an elastic tail (the torque driven ferromagnetic swimmer) were investigated. These systems were created to be analogous to the beating flagella of many natural microscopic swimmers, two examples would be sperm cells and chlamydomonas cells. These biological cells have typical speeds of 10s of body lengths per second. The main focus of this investigation was to understand how the tail length affects the swimming performance. An important observation was that there is an obvious length tail (5.7 times the head length) at which the swimming speed is maximised (approximately 13 body lengths per second). The experimental results were compared to a theoretical model based on three beads, one of which having a fixed magnetic moment and the other two non-magnetic, connected via elastic filaments. The model shows sufficient complexity to break time symmetry and create a net motion, giving good agreement with experiment. Portable point-of-care systems have the potential to revolutionise medical diagnostics. Such systems require active pumps with low power (USB powered devices) external triggers. Due to the wireless and localisation of magnetic fields could possibly allow these portable point-of-care devices to come to life. The main focus of this investigation was to create fluid pump systems comprising from the previously investigated two-ferromagnetic particle swimmer and the torque driven ferromagnetic swimmer. Building on the fact that if a system can generate a net motion it would also be able to create a net flow. Utilising the geometry of the systems, it has been demonstrated that a swimmer-based system can become a fluid pump by restricting the translational motion. The flow structure generated by a pinned swimmer in different scenarios, such as unrestricted flow around it as well as flow generated in straight, cross-shaped, Y-shaped and circular channels were investigated. This investigation demonstrated the feasibility of incorporating the device into a channel and its capability of acting as a pump, valve and flow splitter. As well as a single pump system, networks of the previously mentioned pump systems were fabricated and experimentally investigated. The purpose of this investigation was to utilise the behaviour of the collective motion. Such networks could also be attached to the walls or top of the channel to create a less invasive system compared to pump based within the channel system. The final investigation involved creating collective motion systems which could mimic the beating of cilia - known as a metachronal wave. Two methods were used to create an analogous behaviour. The first was using arrays of identical magnetic rotors, which under the influence of an external magnetic field created two main rotational patterns. The rotational patterns were shown to be controllable producing useful flow fields at low Reynolds numbers. The second system relied on the magnetic components having different fixed magnetisation to create a phase lag between oscillations. The magnetic components were investigated within a channel and the separation between the components was shown to be a key parameter for controlling the induced flow. In both cases, a simple model was produced to help understand the behaviour. Finally, a selection of preliminary investigations into possible applications were conducted experimentally. These investigations included, measuring the effective surface viscosity of lipid monolayers, created cell growth microchannels, as well as systems which could be used for blood plasma separation. The properties of lipid monolayers vary with the surface density, resulting on distinct phase transitions. Slight differences in the molecular lattice are often accompanied by significant changes in the surface viscosity and elasticity. The idea was to use a swimmer as a reporter of the monolayer viscosity, resulting in a less invasive method compared to current techniques to monitor monolayer viscosity, for example torsion pendulums and channel viscometers. The reported effective surface viscosity closely matched the typical Langmuir trough measurements (with a systematic shift of approximately 17 ÅÂČ/molecule). The blood plasma separation preliminary work shows the previously investigated two-ferromagnetic particle swimmer mixing a typical volume (100 ÎŒm) blood sample with a buffer solution in 21 seconds. The system was also able to create locations with a high population of red blood cells. This resulted in a separation between the blood plasma and red blood cells. Two other preliminary results of future investigations were presented; the collective motion of free swimmers, and the fabrication of ribbon-like structures with fixed magnetic moment patterns.European CommissionEngineering and Physical Sciences Research Council (EPSRC

    Challenges and attempts to make intelligent microswimmers

    Get PDF
    The study of microswimmers’ behavior, including their self-propulsion, interactions with the environment, and collective phenomena, has received significant attention over the past few decades due to its importance for various biological and medical applications. Microswimmers can easily access micro-fluidic channels and manipulate microscopic entities, enabling them to perform sophisticated tasks as untethered mobile microrobots inside the human body or microsize devices. Thanks to the advancements in micro/nano-technologies, a variety of synthetic and biohybrid microrobots have been designed and fabricated. Nevertheless, a key challenge arises: how to guide the microrobots to navigate through complex fluid environments and perform specific tasks. The model-free reinforcement learning (RL) technique appears to be a promising approach to address this problem. In this review article, we will first illustrate the complexities that microswimmers may face in realistic biological fluid environments. Subsequently, we will present recent experimental advancements in fabricating intelligent microswimmers using physical intelligence and biohybrid techniques. We then introduce several popular RL algorithms and summarize the recent progress for RL-powered microswimmers. Finally, the limitations and perspectives of the current studies in this field will be discussed

    Rolled up microtubes for the capture, guidance and release of single spermatozoa

    Get PDF
    Hybride Mikroschwimmer, die einen biologischen Antrieb und eine kĂŒnstlich hergestellte Mikrostruktur enthalten sind ein attraktiver Ansatz um kontrollierte Bewegung auf kleinstem Maßstab zu erreichen. In dieser Dissertation wird ein neuer hybrider Mikroschwimmer vorgestellt, der aus ferromagnetischen Nanomembranen besteht, die sich zu Mikroröhrchen aufrollen und in der Lage sind, einzelne Spermien einzufangen. Dieser Mikrobioroboter nutzt die starke Antriebskraft der Spermazelle um das magnetische Mikroröhrchen fortzubewegen. Die vorliegende Arbeit beschreibt, wie dieser Mikroschwimmer seine Bewegung vollzieht und wie verschiedene Faktoren wie Temperatur, Radius der Mikroröhrchen, Eindringtiefe der Spermien in das Röhrchen und LĂ€nge der Röhrchen einen Einfluss auf sein Verhalten haben. Richtungskontrolle wird durch externe magnetische Felder realisiert und es wird dargestellt, wie dies zur Trennung der Mikrobioroboter aus einer Mischung von Spermien und Mikroröhrchen genutzt werden kann. Weiterhin werden zwei OberflĂ€chenmodifizierungsmethoden angewandt um die Kupplungseffizienz zwischen Mikroröhrchen und Spermien zu erhöhen. In diesen Methoden wird das extrazellulĂ€re Protein Fibronektin auf die innere RöhrchenoberflĂ€che aufgebracht und dient als Bindungsstoff fĂŒr Spermien. Schließlich wird durch den Einbau temperatursensitiver Material in die Mikroröhrchen ein ferngesteuerter Freisetzungsmechanismus fĂŒr die Spermazelle vorgestellt. Dabei falten sich die Mikroröhrchen bei kleinen Temperaturerhöhungen auf und setzen die Zelle frei. Diese Arbeit diskutiert letztendlich das Potential solch eines hybriden Mikroschwimmers fĂŒr die Anwendung in assistierter Reproduktion.:TABLE OF CONTENTS SELBSTSTÄNDIGKEITSERKLÄRUNG 0 ABSTRACT 1 TABLE OF CONTENTS 3 1 MOTIVATION AND GOALS 5 1.1 MINIATURIZATION: “THERE IS PLENTY OF ROOM AT THE BOTTOM
” 5 1.2 SPERMBOTS: POTENTIAL IMPACT 7 2 BACKGROUND AND STATE-OF-THE-ART 11 2.1 MICROBIOROBOTICS 11 2.2 SPERM MORPHOLOGY AND THEIR JOURNEY TO THE EGG 15 2.3 INFERTILITY AND ASSISTED REPRODUCTION TECHNIQUES 19 2.4 SINGLE CELL RELEASE 22 2.5 STIMULI-RESPONSIVE MATERIALS 25 3 MATERIAL AND METHODS 29 3.1 ROLLED UP TECHNOLOGY 29 3.2 TREATMENT OF BOVINE SPERMATOZOA 32 3.2.1 Preparation of Spermbots 32 3.2.2 Speed Measurements 33 3.2.3 Separation On Chip 33 3.3 SURFACE MODIFICATION OF MICROTUBES 34 3.3.1 Surface Chemistry 35 3.3.2 Microcontact printing 39 3.4 POLYMER TUBE FABRICATION 44 3.4.1 Synthesis of photosensitive monomer 4-Acryloylbenzophenone 44 3.4.2 Synthesis of poly (N-isopropylacrylamide-co-Acryloylbenzophenone) 46 3.4.3 Photolithography of polymeric films 48 3.5 VIABILITY TESTS 51 4 RESULTS AND DISCUSSION 53 4.1 CHARACTERIZATION OF SPERMBOTS 55 4.2 TEMPERATURE INFLUENCE 60 4.3 MAGNETIC CONTROL 62 4.4 SEPARATION ON CHIP 68 4.5 EFFECT OF DECREASED MICROTUBE LENGTH 72 4.6 COUPLING EFFICIENCY 74 4.7 THERMORESPONSIVE POLYMERIC MICROTUBES FOR CELL RELEASE 80 4.8 SPERM VIABILITY TESTS 94 5 SUMMARY AND CONCLUSIONS 97 6 OUTLOOK 101 7 LIST OF FIGURES 107 8 LIST OF TABLES 113 9 ABBREVIATIONS 115 10 CURRICULUM VITAE 117 11 LIST OF PUBLICATIONS 119 JOURNAL ARTICLES 119 CONTRIBUTIONS TO COLLECTED EDITIONS/PROCEEDINGS 121 12 ACKNOWLEDGEMENTS 123 13 REFERENCES 125The search for autonomously moving, highly functional and controllable microdevices is a purpose of current micro/nanobiotechnology research, especially in the area of biomedical applications, for which reason, biocompatible solutions are in demand. In this thesis, a novel type of hybrid microswimmer is fabricated by the combination of rolled up thin nanomembranes with bovine spermatozoa. The microbiorobot presented here uses the powerful motion of the sperm flagella as a propulsion source for the magnetic microtube. This work demonstrates how the microswimmer performs its motion and how several factors such as temperature, radius of the microtube, penetration of the cell inside the microtube and length of the tube have influence on its performance. Directional control mechanisms are offered by external magnetic fields and are presented to be useful for the on-chip separation of the microbiorobots from a mixture of cells and microtubes. Two surface modification methods are presented as means to improve the coupling efficiency between the microtubes and the sperm cells. By these surface functionalizations, the extracellular matrix protein fibronectin is attached on the inner microtube walls and serves as binding agent for the spermatozoa. Finally, a remote release mechanism for the sperm cells is demonstrated by the incorporation of thermoresponsive material into the microtubes, which makes them fold and unfold upon small temperature changes. This work discusses the potential of such microswimmers for the application in assisted reproduction techniques and gives an outlook on future perspectives.:TABLE OF CONTENTS SELBSTSTÄNDIGKEITSERKLÄRUNG 0 ABSTRACT 1 TABLE OF CONTENTS 3 1 MOTIVATION AND GOALS 5 1.1 MINIATURIZATION: “THERE IS PLENTY OF ROOM AT THE BOTTOM
” 5 1.2 SPERMBOTS: POTENTIAL IMPACT 7 2 BACKGROUND AND STATE-OF-THE-ART 11 2.1 MICROBIOROBOTICS 11 2.2 SPERM MORPHOLOGY AND THEIR JOURNEY TO THE EGG 15 2.3 INFERTILITY AND ASSISTED REPRODUCTION TECHNIQUES 19 2.4 SINGLE CELL RELEASE 22 2.5 STIMULI-RESPONSIVE MATERIALS 25 3 MATERIAL AND METHODS 29 3.1 ROLLED UP TECHNOLOGY 29 3.2 TREATMENT OF BOVINE SPERMATOZOA 32 3.2.1 Preparation of Spermbots 32 3.2.2 Speed Measurements 33 3.2.3 Separation On Chip 33 3.3 SURFACE MODIFICATION OF MICROTUBES 34 3.3.1 Surface Chemistry 35 3.3.2 Microcontact printing 39 3.4 POLYMER TUBE FABRICATION 44 3.4.1 Synthesis of photosensitive monomer 4-Acryloylbenzophenone 44 3.4.2 Synthesis of poly (N-isopropylacrylamide-co-Acryloylbenzophenone) 46 3.4.3 Photolithography of polymeric films 48 3.5 VIABILITY TESTS 51 4 RESULTS AND DISCUSSION 53 4.1 CHARACTERIZATION OF SPERMBOTS 55 4.2 TEMPERATURE INFLUENCE 60 4.3 MAGNETIC CONTROL 62 4.4 SEPARATION ON CHIP 68 4.5 EFFECT OF DECREASED MICROTUBE LENGTH 72 4.6 COUPLING EFFICIENCY 74 4.7 THERMORESPONSIVE POLYMERIC MICROTUBES FOR CELL RELEASE 80 4.8 SPERM VIABILITY TESTS 94 5 SUMMARY AND CONCLUSIONS 97 6 OUTLOOK 101 7 LIST OF FIGURES 107 8 LIST OF TABLES 113 9 ABBREVIATIONS 115 10 CURRICULUM VITAE 117 11 LIST OF PUBLICATIONS 119 JOURNAL ARTICLES 119 CONTRIBUTIONS TO COLLECTED EDITIONS/PROCEEDINGS 121 12 ACKNOWLEDGEMENTS 123 13 REFERENCES 12
    corecore