318 research outputs found

    Readout and Control Beyond a Few Qubits: Scaling-up Solid State Quantum Systems

    Get PDF
    Quantum entanglement and superposition, in addition to revealing interesting physics in their own right, can be harnessed as computational resources in a machine, enabling a range of algorithms for classically intractable problems. In recent years, experiments with small numbers of qubits have been demonstrated in a range of solid-state systems, but this is far from the numbers required to realise a useful quantum computer. In addition to the qubits themselves, quantum operation requires a host of classical electronics for control and readout, and current techniques used in few-qubit systems are not scalable. This thesis presents a series of techniques for control and readout of solid-state qubits, working towards scalability by integrating classical control with the quantum technology. Two techniques for reducing the footprint associated with readout of gallium arsenide spin qubits are demonstrated. Gate electrodes, used to define the quantum dot, are also shown to be sensitive state detectors. These gate-sensors, and the more conventional Quantum Point Contacts, are then multiplexed in the frequency domain, where three-channel qubit readout and ten-channel QPC readout are demonstrated. Two types of superconducting devices are also explored. The loss in superconducting coplanar waveguide resonators is measured, and a suppression of coupling to the parasitic electromagnetic environment is demonstrated. The thesis also details software for the simulation of Josephson-junction based circuits including features beyond what is available in commercial products. Finally, an architecture for managing control of a scalable machine is proposed where classical components are distributed throughout a cryostat and cryogenic switches route control pulses to the appropriate qubits. A simple implementation of the architecture is demonstrated that incorporates a double quantum dot, a gallium arsenide switch matrix, frequency multiplexed readout, and cryogenic classical computation

    A compact model of precessional spin-transfer switching for MTJ with a perpendicular polarizer

    Get PDF
    International audienceMagnetic Tunnel Junction (MTJ) devices are CMOS compatible with high stability, high reliability and non-volatility. A macro-model of MTJ with preces- sional switching is presented in this paper. This model is based on Spin-Transfer Torque (STT) writing approach. The current-induced magnetic switching and excitations was studied in structures comprising a perpendicularly magnetized polarizing layer (PL), an in-plane magne- tized free layer (FL), and an in-plane magnetized analyzing layer (AL)

    Quantum-dot Cellular Automata: Review Paper

    Get PDF
    Quantum-dot Cellular Automata (QCA) is one of the most important discoveries that will be the successful alternative for CMOS technology in the near future. An important feature of this technique, which has attracted the attention of many researchers, is that it is characterized by its low energy consumption, high speed and small size compared with CMOS.  Inverter and majority gate are the basic building blocks for QCA circuits where it can design the most logical circuit using these gates with help of QCA wire. Due to the lack of availability of review papers, this paper will be a destination for many people who are interested in the QCA field and to know how it works and why it had taken lots of attention recentl

    A Concept for an STJ-based Spectrograph

    Full text link
    We describe a multi-order spectrograph concept suitable for 8m-class telescopes, using the intrinsic spectral resolution of Superconducting Tunneling Junction detectors to sort the spectral orders. The spectrograph works at low orders, 1-5 or 1-6, and provides spectral coverage with a resolving power of R~8000 from the atmospheric cutoff at 320 nm to the long wavelength end of the infrared H or K band at 1800 nm or 2400 nm. We calculate that the spectrograph would provide substantial throughput and wavelength coverage, together with high time resolution and sufficient dynamic range. The concept uses currently available technology, or technologies with short development horizons, restricting the spatial sampling to two linear arrays; however an upgrade path to provide more spatial sampling is identified. All of the other challenging aspects of the concept - the cryogenics, thermal baffling and magnetic field biasing - are identified as being feasible.Comment: Accepted in Monthly Notices of the Royal Astronomical Society, 12 pages with 10 figure

    Fault and Defect Tolerant Computer Architectures: Reliable Computing With Unreliable Devices

    Get PDF
    This research addresses design of a reliable computer from unreliable device technologies. A system architecture is developed for a fault and defect tolerant (FDT) computer. Trade-offs between different techniques are studied and yield and hardware cost models are developed. Fault and defect tolerant designs are created for the processor and the cache memory. Simulation results for the content-addressable memory (CAM)-based cache show 90% yield with device failure probabilities of 3 x 10(-6), three orders of magnitude better than non fault tolerant caches of the same size. The entire processor achieves 70% yield with device failure probabilities exceeding 10(-6). The required hardware redundancy is approximately 15 times that of a non-fault tolerant design. While larger than current FT designs, this architecture allows the use of devices much more likely to fail than silicon CMOS. As part of model development, an improved model is derived for NAND Multiplexing. The model is the first accurate model for small and medium amounts of redundancy. Previous models are extended to account for dependence between the inputs and produce more accurate results

    A compact model for magnetic tunnel junction (MTJ) switched by thermally assisted Spin transfer torque (TAS + STT)

    Get PDF
    Thermally assisted spin transfer torque [TAS + STT] is a new switching approach for magnetic tunnel junction [MTJ] nanopillars that represents the best trade-off between data reliability, power efficiency and density. In this paper, we present a compact model for MTJ switched by this approach, which integrates a number of physical models such as temperature evaluation and STT dynamic switching models. Many experimental parameters are included directly to improve the simulation accuracy. It is programmed in the Verilog-A language and compatible with the standard IC CAD tools, providing an easy parameter configuration interface and allowing high-speed co-simulation of hybrid MTJ/CMOS circuits

    Scalable Control and Measurement of Gate-Defined Quantum Dot Systems

    Get PDF
    There is currently a worldwide effort towards the realisation of large-scale quantum computers that exploit quantum phenomena for information processing. While these computing systems could potentially redefine the technological landscape, harnessing quantum effects is challenging due to their inherently fragile nature and the experimentally demanding environments in which they arise. In order for quantum computation to be viable it is first necessary to demonstrate the operation of two-level quantum systems (qubits) which have long coherence times, can be quickly read out, and can be controlled with high fidelity. Focusing on these key requirements, this thesis presents four experiments towards scalable solid state quantum computing using gate-defined quantum dot devices based on gallium arsenide (GaAs) heterostructures. The first experiment investigates a phonon emission process that limits the charge coherence in GaAs and potentially complicates the microwave control of multi-qubit devices. We show that this microwave analogy to Raman spectroscopy can provide a means of detecting the unique phonon spectral density created by a nanoscale device. Experimental results are compared to a theoretical model based on a non-Markovian master equation and approaches to suppressing electron-phonon coupling are discussed. The second experiment demonstrates a technique involving in-situ gate electrodes coupled to lumped-element resonators to provide high-bandwidth dispersive read-out of the state of a double quantum dot. We characterise the charge sensitivity of this method in the few-electron regime and benchmark its performance against quantum point contact charge sensors. The third experiment implements a low-loss, chip-level frequency multiplexing scheme for the readout of scaled-up spin qubit arrays. Dispersive gate-sensing is realised in combination with charge detection based on two radio frequency quantum point contacts to perform multiplexed readout of a double quantum dot in the few-electron regime. Demonstration of a 10-channel multiplexing device is achieved and limitations in scaling spin qubit readout to large numbers using multiplexed channels discussed. The final experiment ties previously presented results together by realising a micro-architecture for controlling and reading out qubits during the execution of a quantum algorithm. The basic principles of this architecture are demonstrated via the manipulation of a semiconductor qubit using control pulses that are cryogenically routed using a high-electron mobility transistor switching matrix controlled by a field programmable gate array. Finally, several technical results are also presented including the development of printed circuit board solutions to allow the high-frequency measurement of nanoscale devices at cryogenic temperatures and the design of on-chip interconnects used to suppress electromagnetic crosstalk in high-density spin qubit device architectures

    Approaches to Building a Quantum Computer Based on Semiconductors

    Get PDF
    Throughout this Ph.D., the quest to build a quantum computer has accelerated, driven by ever-improving fidelities of conventional qubits and the development of new technologies that promise topologically protected qubits with the potential for lifetimes that exceed those of comparable conventional qubits. As such, there has been an explosion of interest in the design of an architecture for a quantum computer. This design would have to include high-quality qubits at the bottom of the stack, be extensible, and allow the layout of many qubits with scalable methods for readout and control of the entire device. Furthermore, the whole experimental infrastructure must handle the requirements for parallel operation of many qubits in the system. Hence the crux of this thesis: to design an architecture for a semiconductor-based quantum computer that encompasses all the elements that would be required to build a large scale quantum machine, and investigate the individual these elements at each layer of this stack, from qubit to readout to control
    corecore