2,787 research outputs found

    Magnetic resonance imaging after most common form of concussion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Until now there is a lack of carefully controlled studies with conventional MR imaging performed exclusively in concussion with short lasting loss of consciousness (LOC).</p> <p>Methods</p> <p>A MR investigation was performed within 24 hours and after 3 months in 20 patients who had suffered a concussion with a verified loss of consciousness of maximally 5 minutes. As a control group, 20 age- and gender matched patients with minor orthopaedic injuries had a MR investigation using the same protocol.</p> <p>Results</p> <p>In a concussion population with an average LOC duration of 1. 4 minutes no case with unequivocal intracranial traumatic pathology was detected.</p> <p>Conclusion</p> <p>An ordinary concussion with short lasting LOC does not or only seldom result in a degree of diffuse axonal injury (DAI) that is visualized by conventional MR with field strength of 1.0 Tesla (T). Analysis of earlier MR studies in concussion using field strength of 1.5 T as well as of studies with diffusion tensor MR imaging (MR DTI) reveal methodological shortcomings, in particular use of inadequate control groups. There is, therefore, a need for carefully controlled studies using MR of higher field strength and/or studies with MR DTI exclusively in common concussion with LOC of maximally 5 minutes.</p

    Advancing imaging technologies for patients with spinal pain : with a focus on whiplash injury

    Get PDF
    Background: Radiological observations of soft-tissue changes that may relate to clinical symptoms in patients with traumatic and non-traumatic spinal disorders are highly controversial. Studies are often of poor quality and findings are inconsistent. A plethora of evidence suggests some pathoanatomical findings from traditional imaging applications are common in asymptomatic participants across the life span, which further questions the diagnostic, prognostic, and theranostic value of traditional imaging. Although we do not dispute the limited evidence for the clinical importance of most imaging findings, we contend that the disparate findings across studies may in part be due to limitations in the approaches used in assessment and analysis of imaging findings. Purpose: This clinical commentary aimed to (1) briefly detail available imaging guidelines, (2) detail research-based evidence around the clinical use of findings from advanced, but available, imaging applications (eg, fat and water magnetic resonance imaging and magnetization transfer imaging), and (3) introduce how evolving imaging technologies may improve our mechanistic understanding of pain and disability, leading to improved treatments and outcomes. Study Design/Setting: A non-systematic review of the literature is carried out. Methods: A narrative summary (including studies from the authors' own work in whiplash injuries) of the available literature is provided. Results: An emerging body of evidence suggests that the combination of existing imaging sequences or the use of developing imaging technologies in tandem with a good clinical assessment of modifiable risk factors may provide important diagnostic information toward the exploration and development of more informed and effective treatment options for some patients with traumatic neck pain. Conclusions: Advancing imaging technologies may help to explain the seemingly disconnected spectrum of biopsychosocial signs and symptoms of traumatic neck pain

    Chronic Post-Concussion Neurocognitive Deficits. I. Relationship with White Matter Integrity.

    Get PDF
    We previously identified visual tracking deficits and associated degradation of integrity in specific white matter tracts as characteristics of concussion. We re-explored these characteristics in adult patients with persistent post-concussive symptoms using independent new data acquired during 2009-2012. Thirty-two patients and 126 normal controls underwent cognitive assessments and MR-DTI. After data collection, a subset of control subjects was selected to be individually paired with patients based on gender and age. We identified patients' cognitive deficits through pairwise comparisons between patients and matched control subjects. Within the remaining 94 normal subjects, we identified white matter tracts whose integrity correlated with metrics that indicated performance degradation in patients. We then tested for reduced integrity in these white matter tracts in patients relative to matched controls. Most patients showed no abnormality in MR images unlike the previous study. Patients' visual tracking was generally normal. Patients' response times in an attention task were slowed, but could not be explained as reduced integrity of white matter tracts relating to normal response timing. In the present patient cohort, we did not observe behavioral or anatomical deficits that we previously identified as characteristic of concussion. The recent cohort likely represented those with milder injury compared to the earlier cohort. The discrepancy may be explained by a change in the patient recruitment pool circa 2007 associated with an increase in public awareness of concussion

    Neurological consequences of traumatic brain injuries in sports.

    Get PDF
    Traumatic brain injury (TBI) is common in boxing and other contact sports. The long term irreversible and progressive aftermath of TBI in boxers depicted as punch drunk syndrome was described almost a century ago and is now widely referred as chronic traumatic encephalopathy (CTE). The short term sequelae of acute brain injury including subdural haematoma and catastrophic brain injury may lead to death, whereas mild TBI, or concussion, causes functional disturbance and axonal injury rather than gross structural brain damage. Following concussion, symptoms such as dizziness, nausea, reduced attention, amnesia and headache tend to develop acutely but usually resolve within a week or two. Severe concussion can also lead to loss of consciousness. Despite the transient nature of the clinical symptoms, functional neuroimaging, electrophysiological, neuropsychological and neurochemical assessments indicate that the disturbance of concussion takes over a month to return to baseline and neuropathological evaluation shows that concussion-induced axonopathy may persist for years. The developing brains in children and adolescents are more susceptible to concussion than adult brain. The mechanism by which acute TBI may lead to the neurodegenerative process of CTE associated with tau hyperphosphorylation and the development of neurofibrillary tangles (NFTs) remains speculative. Focal tau-positive NFTs and neurites in close proximity to focal axonal injury and foci of microhaemorrhage and the predilection of CTE-tau pathology for perivascular and subcortical regions suggest that acute TBI-related axonal injury, loss of microvascular integrity, breach of the blood brain barrier, resulting inflammatory cascade and microglia and astrocyte activation are likely to be the basis of the mechanistic link of TBI and CTE. This article provides an overview of the acute and long-term neurological consequences of TBI in sports. Clinical, neuropathological and the possible pathophysiological mechanisms are discussed. This article is part of a Special Issue entitled 'Traumatic Brain Injury'

    Prognostic value of early magnetic resonance imaging in dogs after traumatic brain injury: 50 cases

    Get PDF
    Retrospective study of dogs with TBI that underwent 1.5T MRI within 14 days after head trauma. MRI evaluators were blinded to the clinical presentation, and all images were scored based on an MRI grading system (Grade I [normal brain parenchyma] to Grade VI [bilateral lesions affecting the brainstem with or without any lesions of lesser grade]). Skull fractures, percentage of intraparenchymal lesions, degree of midline shift, and type of brain herniation were evaluated. MGCS was assessed at presentation. The presence of seizures was recorded. Outcome was assessed at 48 h (alive or dead) and at 3, 6, 12, and 24 months after TBI

    Role of advanced neuroimaging, fluid biomarkers and genetic testing in the assessment of sport-related concussion: a systematic review

    Get PDF
    Objective To conduct a systematic review of published literature on advanced neuroimaging, fluid biomarkers and genetic testing in the assessment of sport-related concussion (SRC). Data sources Computerised searches of Medline, PubMed, Cumulative Index to Nursing and Allied Health Literature (CINAHL), PsycINFO, Scopus and Cochrane Library from 1 January 2000 to 31 December 2016 were done. There were 3222 articles identified. Study selection In addition to medical subject heading terms, a study was included if (1) published in English, (2) represented original research, (3) involved human research, (4) pertained to SRC and (5) involved data from neuroimaging, fluid biomarkers or genetic testing collected within 6 months of injury. Ninety-eight studies qualified for review (76 neuroimaging, 16 biomarkers and 6 genetic testing). Data extraction Separate reviews were conducted for neuroimaging, biomarkers and genetic testing. A standardised data extraction tool was used to document study design, population, tests employed and key findings. Reviewers used a modified quality assessment of studies of diagnostic accuracy studies (QUADAS-2) tool to rate the risk of bias, and a modified Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system to rate the overall level of evidence for each search. Data synthesis Results from the three respective reviews are compiled in separate tables and an interpretive summary of the findings is provided. Conclusions Advanced neuroimaging, fluid biomarkers and genetic testing are important research tools, but require further validation to determine their ultimate clinical utility in the evaluation of SRC. Future research efforts should address current gaps that limit clinical translation. Ultimately, research on neurobiological and genetic aspects of SRC is predicted to have major translational significance to evidence-based approaches to clinical management of SRC, much like applied clinical research has had over the past 20 years

    New neurophysiological and imaging methods for detection of microstructural changes in mild traumatic brain injury

    Get PDF
    Mild traumatic brain injury is a very common health problem. Although outcome is generally good, a significant proportion of patients have persistent symptoms or an incomplete functional recovery. The mechanisms of this are incompletely understood, but believed to include microstructural injuries that may be undetectable by presently used diagnostic tests. This thesis aims at exploring new diagnostic methods that could be utilised in examining mild traumatic brain injury. I study tested transcranial magnetic stimulation defined motor thresholds in a sample of chronic phase mild traumatic brain injury patients. Elevated motor thresholds were found compared to healthy controls, associated with altered excitability of the corticospinal tract. II study used transcranial magnetic stimulation combined with electroencephalography to probe responses of frontal brain regions. The employed method is reported to be sensitive to changes in excitability and connectivity of the brain. Differences were found between samples of fully recovered and persistently symptomatic patients with mild traumatic brain injury and healthy controls. On basis of this, transcranial magnetic stimulation and electroencephalography could be used to detect functional changes that are not paralleled by lesions on routine magnetic resonance imaging. III study compared diffusion tensor imaging based deterministic tractography and a newer method, based on constrained spherical deconvolution, automatic, deep learning based segmentation and probabilistic tractography. Participants were patients with symptomatic mild traumatic brain injury and healthy controls. The newer approach was able to find differences between the groups, while diffusion tensor method was not. This suggests the new approach may be more sensitive in detecting microstructural changes related to mild traumatic brain injury. These results show that mild traumatic brain injury can be associated with functional and structural changes in the absence of trauma-related findings on routine MRI. The methods evaluated may provide new ways to detect these changes.Uusia neurofysiologisia ja kuvantamismenetelmiä lievään aivovammaan liittyvien mikrorakenteellisten muutosten toteamisessa Lievä aivovamma on erittäin tavallinen. Toipuminen on yleensä hyvää, mutta osalle potilaista jää pitkäkestoisia oireita tai toimintakyvyn vajavuutta. Näiden syntymekanismia ei täysin ymmärretä, mutta ajatellaan sen voivan liittyä aivojen mikrorakenteellisiin muutoksiin, joiden toteamiseen nykyiset diagnostiset testit voivat olla riittämättömiä. Tämä väitöstutkimus selvittää uusia keinoja, joita voitaisiin hyödyntää lievän aivovamman arvioinnissa. I osatyössä tutkittiin transkraniaalisen magneettistimulaation avulla motorisia kynnyksiä. Tutkimusjoukkona oli lievän aivovamman saaneita, kroonisen vaiheen potilaita. Potilasjoukolla todettiin terveisiin verrokkeihin nähden korkeampia motorisia kynnyksiä, joka liittyy muutoksiin kortikospinaaliradan ärtyvyydessä. II osatyö hyödynsi transkraniaalista magneettistimulaatiota ja elektroenkefalografiaa frontaalisten aivoalueiden vasteiden tutkimisessa. Aiempien julkaisujen perusteella menetelmä on herkkä aivojen ärtyvyyden ja aivoalueiden välisten yhteyksien muutosten toteamisessa. Menetelmällä löydettiin eroja lievästä aivovammasta oireettomiksi toipuneista, pitkäkestoisesti oireilevista ja terveistä verrokeista koostuneiden osallistujajoukkojen välillä. Transkraniaalisen magneettistimulaation ja elektroenkefalografian yhdistelmällä saatetaan siten havaita toimin-nallisia muutoksia, joille ei ole vastinetta tavallisissa magneettikuvissa. III osatyössä verrattiin diffuusiotensorikuvantamista ja determinististä traktografiaa uudempaan menetelmään, joka perustui constrained spherical deconvolution -laskentaan, automaattiseen, syväoppimiseen perustuvaan segmentaatioon ja probabilistiseen traktografiaan. Tutkimusjoukkona oli lievän aivovamman saaneita, oireisia potilaita ja terveitä verrokkeja. Uudella menetelmällä löydettiin eroja ryhmien välillä, mutta vertailumenetelmällä eroja ei havaittu. Tällä perusteella uusi menetelmä vaikuttaa herkemmältä aivovammaan liittyvien mikrorakenteellisten muutosten toteamisessa. Tulokset osoittavat, että lievään aivovammaan voi liittyä toiminnallisia ja rakenteellisia muutoksia, vaikka tavanomaisen magneettikuvauksen löydös olisi normaali. Näiden muutosten toteaminen voi olla mahdollista arvioiduilla menetelmillä

    Neuroimaging in repetitive brain trauma

    Get PDF
    Sports-related concussions are one of the major causes of mild traumatic brain injury. Although most patients recover completely within days to weeks, those who experience repetitive brain trauma (RBT) may be at risk for developing a condition known as chronic traumatic encephalopathy (CTE). While this condition is most commonly observed in athletes who experience repetitive concussive and/or subconcussive blows to the head, such as boxers, football players, or hockey players, CTE may also affect soldiers on active duty. Currently, the only means by which to diagnose CTE is by the presence of phosphorylated tau aggregations post-mortem. Non-invasive neuroimaging, however, may allow early diagnosis as well as improve our understanding of the underlying pathophysiology of RBT. The purpose of this article is to review advanced neuroimaging methods used to investigate RBT, including diffusion tensor imaging, magnetic resonance spectroscopy, functional magnetic resonance imaging, susceptibility weighted imaging, and positron emission tomography. While there is a considerable literature using these methods in brain injury in general, the focus of this review is on RBT and those subject populations currently known to be susceptible to RBT, namely athletes and soldiers. Further, while direct detection of CTE in vivo has not yet been achieved, all of the methods described in this review provide insight into RBT and will likely lead to a better characterization (diagnosis), in vivo, of CTE than measures of self-report
    corecore