247 research outputs found

    Study and development of a magnetic steering system for microrobots

    Get PDF
    In a close future micro-scaled untethered robots might be able to access small spaces inside the human body, currently reachable only by using invasive surgical methods, thus revolutionizing future medicine. The aim of this Master Thesis work is to study and develop a system that can exploit static magnetic fields and gradients to steer purpose-developed microrobots. A concept of the device for the generation of magnetic fields is first elaborated, moving from the state-of-art systems based on Helmholtz and Maxwell coils, which can generate, respectively, nearly uniform magnetic fields and gradients. A uniform magnetic field can be used to orient a magnetic or magnetisable object, aligning it with the direction of the field, while a uniform magnetic gradient can be used to shift such an object. The developed system is formed by two coils in the Maxwell geometrical configuration and independently powered in order to generate a uniform magnetic gradient, a quasi-uniform magnetic field or a superimposition of the two, reducing the overall complexity of the hardware with respect to the systems also employing Helmholtz coils. An analytical model of the on-axis magnetic field generated by the device and a finite element model of the field in the workspace are developed. Three microrobot prototypes are then considered: a millimetre-sized NdFeB cylindrical permanent magnet, which allows to test the maximum performances of the developed device, a polymeric microbead, which is more compatible with biomedical applications but less reactive to magnetic fields than a permanent magnet, and a polymeric nanofilm, which allows to test the steering of very anisotropic shapes, both containing iron oxide nanoparticles. Models of their interaction with magnetic fields are presented. Furthermore, a model of the motion of the three prototypes employing the developed magnetic device is presented. The experimental set up is described, including the two coils and their support backing, the monitoring and powering circuitry and a software kit containing four graphical user interfaces for the calibration and validation of the system. After a set of trials performed for the calibration of the magnetic-field-generating device, the system is tested in steering the microrobot prototypes. The extrapolated data are compared to the behaviours predicted by the magnetic motion models. The abilities of the magnetic steering system and its main limits are finally examined, suggesting possible improvements of both the magnetic device and the microrobots in order to enhance their control and manipulation. In particular indications for developing the next-generation of wireless magnetically-actuated microrobots and the relative steering systems are extrapolated

    Magnetic nanoparticle density mapping from the magnetically induced displacement data: a simulation study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Magnetic nanoparticles are gaining great roles in biomedical applications as targeted drug delivery agents or targeted imaging contrast agents. In the magnetic nanoparticle applications, quantification of the nanoparticle density deposited in a specified region is of great importance for evaluating the delivery of the drugs or the contrast agents to the targeted tissues. We introduce a method for estimating the nanoparticle density from the displacement of tissues caused by the external magnetic field.</p> <p>Methods</p> <p>We can exert magnetic force to the magnetic nanoparticles residing in a living subject by applying magnetic gradient field to them. The nanoparticles under the external magnetic field then exert force to the nearby tissues causing displacement of the tissues. The displacement field induced by the nanoparticles under the external magnetic field is governed by the Navier's equation. We use an approximation method to get the inverse solution of the Navier's equation which represents the magnetic nanoparticle density map when the magnetic nanoparticles are mechanically coupled with the surrounding tissues. To produce the external magnetic field inside a living subject, we propose a coil configuration, the Helmholtz and Maxwell coil pair, that is capable of generating uniform magnetic gradient field. We have estimated the coil currents that can induce measurable displacement in soft tissues through finite element method (FEM) analysis.</p> <p>Results</p> <p>From the displacement data obtained from FEM analysis of a soft-tissue-mimicking phantom, we have calculated nanoparticle density maps. We obtained the magnetic nanoparticle density maps by approximating the Navier's equation to the Laplacian of the displacement field. The calculated density maps match well to the original density maps, but with some halo artifacts around the high density area. To induce measurable displacement in the living tissues with the proposed coil configuration, we need to apply the coil currents as big as 10<sup>4</sup>A.</p> <p>Conclusions</p> <p>We can obtain magnetic nanoparticle maps from the magnetically induced displacement data by approximating the Navier's equation under the assumption of uniform-gradient of the external magnetic field. However, developing a coil driving system with the capacity of up to 10<sup>4</sup>A should be a great technical challenge.</p

    Design of a computer controlled magnetic steering system for biomicrorobots

    Get PDF

    Modeling and design of an electromagnetic actuation system for the manipulation of microrobots in blood vessels

    Get PDF
    Tese de mestrado integrado em Física, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2015A navegação de nano/microdispositivos apresenta um grande potencial para aplicações biomédicas, oferecendo meios de diagnóstico e procedimentos terapêuticos no interior do corpo humano. Dada a sua capacidade de penetrar quase todos os materiais, os campos magnéticos são naturalmente adequados para controlar nano/microdispositivos magnéticos em espaços inacessíveis. Uma abordagem recente é o uso de um aparelho personalizado, capaz de controlar campos magnéticos. Esta é uma área de pesquisa prometedora, mas mais simulações e experiências são necessárias para avaliar a viabilidade destes sistemas em aplicações clínicas. O objectivo deste projecto foi a simulação e desenho de um sistema de atuação eletromagnética para estudar a locomoção bidimensional de microdispositivos. O primeiro passo foi identificar, através da análise de elementos finitos, usando o software COMSOL, diferentes configurações de bobines que permitiriam o controlo de dispositivos magnéticos em diferentes escalas. Baseado nos resultados das simulações, um protótipo de um sistema de atuação magnética para controlar dispositivos com mais de 100 m foi desenhado e construído de raiz, tendo em conta restrições de custos. O sistema consistiu num par de bobines de Helmholtz e rotacionais e um par de bobines de Maxwell dispostas no mesmo eixo. Além disso, componentes adicionais tiveram de ser desenhados ou selecionados para preencher os requisitos do sistema. Para a avaliação do sistema fabricado, testes preliminares foram realizados. A locomoção do microrobot foi testada em diferentes direções no plano x-y. As simulações e experiências confirmaram que é possível controlar a força magnética e o momento da força que atuam num microdispositivo através do campos produzidos pelas bobines de Maxwell e Helmholtz, respectivamente. Assim, este tipo de atuação magnética parece ser uma forma adequada de transferência de energia para futuros microdispositivos biomédicos.Navigation of nano/microdevices has great potential for biomedical applications, offering a means for diagnosis and therapeutic procedures inside the human body. Due to their ability to penetrate most materials, magnetic fields are naturally suited to control magnetic nano/microdevices in inaccessible spaces. One recent approach is the use of custom-built apparatus capable of controlling magnetic devices. This is a promising area of research, but further simulation studies and experiments are needed to estimate the feasibility of these systems in clinical applications. The goal of this project was the simulation and design of an electromagnetic actuation system to study the two dimensional locomotion of microdevices. The first step was to identify, through finite element analysis using software COMSOL, different coil configurations that would allow the control of magnetic devices at different scales. Based on the simulation results, a prototype of a magnetic actuation system to control devices with more than 100 m was designed and built from the ground up, taking into account cost constraints. The system comprised one pair of rotational Helmholtz coils and one pair of rotational Maxwell coils placed along the same axis. Furthermore, additional components had to be designed or selected to fulfil the requirements of the system. For the evaluation of the fabricated system, preliminary tests were carried out. The locomotion of a microdevice was tested along different directions in the x-y plane. The simulations and experiments confirmed that it is possible to control the magnetic force and torque acting on a microdevice through the fields produced by Maxwell and Helmholtz coils, respectively. Thus, this type of magnetic actuation seems to provide a suitable means of energy transfer for future biomedical microdevices

    Design and Implementation of Electromagnetic Actuation System to Actuate Micro/NanoRobots in Viscous Environment

    Get PDF
    The navigation of Micro/Nanorobots (MNRs) with the ability to track a selected trajectory accurately holds significant promise for different applications in biomedicine, providing methods for diagnoses and treatments inside the human body. The critical challenge is ensuring that the required power can be generated within the MNR. Furthermore, ensuring that it is feasible for the robot to travel inside the human body with the necessary power availability. Currently, MNRs are widely driven either by exogenous power sources (light energy, magnetic fields, electric fields, acoustics fields, etc.) or by endogenous energy sources, such as chemical interaction energy. Various driving techniques have been established, including piezoelectric as a driving source, thermal driving, electro-osmotic force driven by biological bacteria, and micro-motors powered by chemical fuel. These driving techniques have some restrictions, mainly when used in biomedicine. External magnetic fields are another potential power source of MNRs. Magnetic fields can permeate deep tissues and be safe for human organisms. As a result, magnetic fields’ magnetic forces and moments can be applied to MNRs without affecting biological fluids and tissues. Due to their features and characteristics of magnetic fields in generating high power, they are naturally suited to control the electromagnetically actuated MNRs in inaccessible locations due to their ability to go through tiny spaces. From the literature, it can be inferred from the available range of actuation technologies that magnetic actuation performs better than other technologies in terms of controllability, speed, flexibility of the working environment, and far less harm may cause to people. Also, electromagnetic actuation systems may come in various configurations that offer many degrees of freedom, different working mediums, and controllability schemes. Although this is a promising field of research, further simulation studies, and analysis, new smart materials, and the development and building of new real systems physically, and testing the concepts under development from different aspects and application requirements are required to determine whether these systems could be implemented in natural clinical settings on the human body. Also, to understand the latest development in MNRs and the actuation techniques with the associated technologies. Also, there is a need to conduct studies and comparisons to conclude the main research achievements in the field, highlight the critical challenges waiting for answers, and develop new research directions to solve and improve the performance. Therefore, this thesis aims to model and analyze, simulate, design, develop, and implement (with complete hardware and software integration) an electromagnetic actuation (EMA) system to actuate MNRs in the sixdimensional (6D) motion space inside a relatively large region of interest (ROI). The second stage is a simulation; simulation and finite element analysis were conducted. COMSOL multi-physics software is used to analyze the performance of different coils and coil pairs for Helmholtz and Maxwell coil configurations and electromagnetic actuation systems. This leads to the following.: • Finite element analysis (FEA) demonstrates that the Helmholtz coils generate a uniform and consistent magnetic field within a targeted ROI, and the Maxwell coils generate a uniform magnetic gradient. • The possibility to combine Helmholtz and Maxwell coils in different space dimensions. With the ability to actuate an MNR in a 6D space: 3D as a position and 3D as orientation. • Different electromagnetic system configurations are proposed, and their effectiveness in guiding an MNR inside a mimicked blood vessel environment was assessed. • Three pairs of Helmholtz coils and three pairs of coils of Maxwell coils are combined to actuate different size MNRs inside a mimicked blood vessel environment and in 6D. Based on the modeling results, a magnetic actuation system prototype that can control different sizes MNRs was conceived. A closed-loop control algorithm was proposed, and motion analysis of the MNR was conducted and discussed for both position and orientation. Improved EMA location tracking along a chosen trajectory was achieved using a PID-based closed-loop control approach with the best possible parameters. Through the model and analysis stage, the developed system was simulated and tested using open- and closed-loop circumstances. Finally, the closedloop controlled system was concluded and simulated to verify the ability of the proposed EMA to actuate an MN under different trajectory tracking examples with different dimensionality and for different sizes of MNRs. The last stage is developing the experimental setup by manufacturing the coils and their base in-house. Drivers and power supplies are selected according to the specifications that actuate the coils to generate the required magnetic field. Three digital microscopes were integrated with the electromagnetic actuation system to deliver visual feedback aiming to track in real-time the location of the MNR in the 6D high viscous fluidic environment, which leads to enabling closed-loop control. The closed-loop control algorithm is developed to facilitate MNR trajectory tracking and minimize the error accordingly. Accordingly, different tests were carried out to check the uniformity of the magnetic field generated from the coils. Also, a test was done for the digital microscope to check that it was calibrated and it works correctly. Experimental tests were conducted in 1D, 2D plane, and 3D trajectories with two different MNR sizes. The results show the ability of the proposed EMA system to actuate the two different sizes with a tracking error of 20-45 µm depending on the axis and the size of the MNR. The experiments show the ability of the developed EMA system to hold the MNR at any point within the 3D fluidic environment while overcoming the gravity effects. A comparison was made between the results achieved (in simulation and physical experiments) and the results deduced from the literature. The comparison shows that the thesis’s outcomes regarding the error and MNR size used are significant, with better performance relative to the MNR size and value of the error

    An overview of multiple DoF magnetic actuated micro-robots.

    No full text
    International audienceThis paper reviews the state of the art of untethered, wirelessly actuated and controlled micro-robots. Research for such tools is being increasingly pursued to provide solutions for medical, biological and industrial applications. Indeed, due to their small size they o er both high velocity, and accessibility to tiny and clustered environments. These systems could be used for in vitro tasks on lab-on-chips in order to push and/or sort biological cells, or for in vivo tasks like minimally invasive surgery and could also be used in the micro-assembly of microcomponents. However, there are many constraints to actuating, manufacturing and controlling micro-robots, such as the impracticability of on-board sensors and actuators, common hysteresis phenomena and nonlinear behavior in the environment, and the high susceptibility to slight variations in the atmosphere like tiny dust or humidity. In this work, the major challenges that must be addressed are reviewed and some of the best performing multiple DoF micro-robots sized from tens to hundreds m are presented. The di erent magnetic micro-robot platforms are presented and compared. The actuation method as well as the control strategies are analyzed. The reviewed magnetic micro-robots highlight the ability of wireless actuation and show that high velocities can be reached. However, major issues on actuation and control must be overcome in order to perform complex micro-manipulation tasks

    Magnetic Field-Based Technologies for Lab-on-a-Chip Applications

    Get PDF
    In the last decades, LOC technologies have represented a real breakthrough in the field of in vitro biochemical and biological analyses. However, the integration of really complex functions in a limited space results extremely challenging and proper working principles should be identified. In this sense, magnetic fields revealed to be extremely promising. Thanks to the exploitation of external magnetic sources and to the integration of magnetic materials, mainly high aspect ratio micro-/nanoparticles, non-contact manipulation of biological and chemical samples can be enabled. In this chapter, magnetic field-based technologies, their basic theory, and main applications in LOC scenario will be described by foreseeing also a deeper interaction/integration with the typical technologies of microrobotics. Attention will be focused on magnetic separation and manipulation, by taking examples coming from traditional LOC devices and from microrobotics

    Influence of Magnetic Nanoparticles and Magnetic Stress on an Ionic Liquid Electrospray Source

    Get PDF
    Two electrospray sources were developed to operate on an ionic liquid ferrofluid; one source was a pressure‑fed capillary electrospray source and the other was a novel electrospray source which used a magnetically‑induced instability to produce a peak from which an electric field could extract electrospray. Multiple characteristics of electrospray operation were examined for both sources using faraday plates/cups, a quartz crystal microbalance, a retarding potential analyzer, and a time-of-flight mass spectrometer. The ILFF electrosprays for a capillary source were shown to operate in a mixed ion/droplet regime. The mass flow of the electrospray beam was primarily transported by larger particles (potential droplets) within it. The magnetic nanoparticles increased the required flowrate and extraction potential of the source, as well as the emission current at a given flowrate. The nanoparticles also influenced the beam divergence and energy of an electrospray, increasing and decreasing each respectively with higher concentrations of NPs. The magnetic field had significant influence on the required flowrate of the electrospray, as it reduced the minimum stable flowrate by upwards of 16 percent. It also was shown to decreased the emission current of ILFF electrosprays for a given flowrate, while concurrently increasing the beam energy of particles in the electrospray. Other effects of magnetic field on electrospray characteristics were either inconclusive or insignificant
    corecore