10,226 research outputs found

    Study and design of topologies and components for high power density DC-DC converters

    Get PDF
    Size reduction of low power electronic DC–DC converters is a topic of major interest for power electronics which requires the study and design of circuits and components working under redefined requirements. For this purpose, novel circuital topologies provide advantages in terms of power density increment, especially where a single chip design is feasible. These concepts have been applied to design and implement an integrated high step-down multiphase buck converter and to study the miniaturization of a stackable fiflyback architecture. Particular attention has been dedicated to power inductors, focusing on the modeling and measurement of magnetic materials’ hysteresis and core losses

    Memristors for the Curious Outsiders

    Full text link
    We present both an overview and a perspective of recent experimental advances and proposed new approaches to performing computation using memristors. A memristor is a 2-terminal passive component with a dynamic resistance depending on an internal parameter. We provide an brief historical introduction, as well as an overview over the physical mechanism that lead to memristive behavior. This review is meant to guide nonpractitioners in the field of memristive circuits and their connection to machine learning and neural computation.Comment: Perpective paper for MDPI Technologies; 43 page

    Multiscale Finite Element Modeling of Nonlinear Magnetoquasistatic Problems Using Magnetic Induction Conforming Formulations

    Full text link
    In this paper we develop magnetic induction conforming multiscale formulations for magnetoquasistatic problems involving periodic materials. The formulations are derived using the periodic homogenization theory and applied within a heterogeneous multiscale approach. Therefore the fine-scale problem is replaced by a macroscale problem defined on a coarse mesh that covers the entire domain and many mesoscale problems defined on finely-meshed small areas around some points of interest of the macroscale mesh (e.g. numerical quadrature points). The exchange of information between these macro and meso problems is thoroughly explained in this paper. For the sake of validation, we consider a two-dimensional geometry of an idealized periodic soft magnetic composite.Comment: Paper accepted for publication in the SIAM MMS journa

    A practical approach for magnetic core-loss characterization

    Get PDF
    A practical approach for magnetic core-loss characterization up to a few megahertz is presented. An error analysis is for the first time performed, revealing that corrections are needed to compensate for errors introduced by the extra phase shift inherent in a measurement setup, and by shunt parasitic capacitance associated with an inductive device under test. A simple technique is then proposed to control the error so as to satisfy prescribed tolerances. Extensive measurements done on a TDK PC40 core yield results which support the analysis. Several sample cores are then characterized at a few megahertz
    • …
    corecore