999 research outputs found

    On Reliability of Underwater Magnetic Induction Communications with Tri-Axis Coils

    Full text link
    Underwater magnetic induction communications (UWMICs) provide a low-power and high-throughput solution for autonomous underwater vehicles (AUVs), which are envisioned to explore and monitor the underwater environment. UWMIC with tri-axis coils increases the reliability of the wireless channel by exploring the coil orientation diversity. However, the UWMIC channel is different from typical fading channels and the mutual inductance information (MII) is not always available. It is not clear the performance of the tri-axis coil MIMO without MII. Also, its performances with multiple users have not been investigated. In this paper, we analyze the reliability and multiplexing gain of UWMICs with tri-axis coils by using coil selection. We optimally select the transmit and receive coils to reduce the computation complexity and power consumption and explore the diversity for multiple users. We find that without using all the coils and MII, we can still achieve reliability. Also, the multiplexing gain of UWMIC without MII is 5dB smaller than typical terrestrial fading channels. The results of this paper provide a more power-efficient way to use UWMICs with tri-axis coils

    Joint Wireless Information and Energy Transfer in a K-User MIMO Interference Channel

    Full text link
    Recently, joint wireless information and energy transfer (JWIET) methods have been proposed to relieve the battery limitation of wireless devices. However, the JWIET in a general K-user MIMO interference channel (IFC) has been unexplored so far. In this paper, we investigate for the first time the JWIET in K-user MIMO IFC, in which receivers either decode the incoming information data (information decoding, ID) or harvest the RF energy (energy harvesting, EH). In the K-user IFC, we consider three different scenarios according to the receiver mode -- i) multiple EH receivers and a single ID receiver, ii) multiple IDs and a single EH, and iii) multiple IDs and multiple EHs. For all scenarios, we have found a common necessary condition of the optimal transmission strategy and, accordingly, developed the transmission strategy that satisfies the common necessary condition, in which all the transmitters transferring energy exploit a rank-one energy beamforming. Furthermore, we have also proposed an iterative algorithm to optimize the covariance matrices of the transmitters that transfer information and the powers of the energy beamforming transmitters simultaneously, and identified the corresponding achievable rate-energy tradeoff region. Finally, we have shown that by selecting EH receivers according to their signal-to-leakage-and-harvested energy-ratio (SLER), we can improve the achievable rate-energy region further.Comment: arXiv admin note: text overlap with arXiv:1303.169

    Safe and Secure Wireless Power Transfer Networks: Challenges and Opportunities in RF-Based Systems

    Full text link
    RF-based wireless power transfer networks (WPTNs) are deployed to transfer power to embedded devices over the air via RF waves. Up until now, a considerable amount of effort has been devoted by researchers to design WPTNs that maximize several objectives such as harvested power, energy outage and charging delay. However, inherent security and safety issues are generally overlooked and these need to be solved if WPTNs are to be become widespread. This article focuses on safety and security problems related WPTNs and highlight their cruciality in terms of efficient and dependable operation of RF-based WPTNs. We provide a overview of new research opportunities in this emerging domain.Comment: Removed some references, added new references, corrected typos, revised some sections (mostly I-B and III-C

    Optimized Training Design for Wireless Energy Transfer

    Full text link
    Radio-frequency (RF) enabled wireless energy transfer (WET), as a promising solution to provide cost-effective and reliable power supplies for energy-constrained wireless networks, has drawn growing interests recently. To overcome the significant propagation loss over distance, employing multi-antennas at the energy transmitter (ET) to more efficiently direct wireless energy to desired energy receivers (ERs), termed \emph{energy beamforming}, is an essential technique for enabling WET. However, the achievable gain of energy beamforming crucially depends on the available channel state information (CSI) at the ET, which needs to be acquired practically. In this paper, we study the design of an efficient channel acquisition method for a point-to-point multiple-input multiple-output (MIMO) WET system by exploiting the channel reciprocity, i.e., the ET estimates the CSI via dedicated reverse-link training from the ER. Considering the limited energy availability at the ER, the training strategy should be carefully designed so that the channel can be estimated with sufficient accuracy, and yet without consuming excessive energy at the ER. To this end, we propose to maximize the \emph{net} harvested energy at the ER, which is the average harvested energy offset by that used for channel training. An optimization problem is formulated for the training design over MIMO Rician fading channels, including the subset of ER antennas to be trained, as well as the training time and power allocated. Closed-form solutions are obtained for some special scenarios, based on which useful insights are drawn on when training should be employed to improve the net transferred energy in MIMO WET systems.Comment: 30 pages, 9 figures, to appear in IEEE Trans. on Communication
    • …
    corecore