1,420 research outputs found

    Isotope geochemistry and petrogenesis of peralkaline Middle Miocene ignimbrites from central Sonora: relationship with continental break-up and the birth of the Gulf of California

    Get PDF
    Middle Miocene peralkaline ignimbrites constitute a specific geodynamic marker of the early stage of opening of the Gulf of California, preserved either in central Sonora or the Puertecitos area, in Baja California. Very uniform ages (12-12.5 Ma) obtained on these rocks show that this volcanic episode corresponds to a specific stage in the tectonic evolution of the proto-gulf area. Field observations and slightly different Sr and Nd isotopic signatures support eruptions from several small volume magma batches rather than from a large-volume caldera forming event. Isotopic ratios help to constrain the petrogenesis of the peralkaline liquids by fractional crystallization of transitional basalts in a shallow reservoir, with slight contamination by Precambrian upper crustal material. Less differentiated glomeroporphyritic icelandites erupted at about 11 Ma, mark an increase in the magma production rate and highlight an easier access to the surface, illustrating an advanced stage in the weakening of the continental crust. The tilting of the Middle Tertiary sequences results from a major change in the tectonic regime, from E-W extension giving rise to N-S grabens, to NNW-SSE strike-slip motion that can be related to the transfer of Baja California from North America to the Pacific plate. The location of peralkaline volcanism coincides with the southern edge of the Precambrian crust and the southernmost extension of the California slab window at 12.5 Ma

    Role of Magmas in protein transport and human mitochondria biogenesis

    Get PDF
    Magmas, a conserved mammalian protein essential for eukaryotic development, is overexpressed in prostate carcinomas and cells exposed to granulocyte-macrophage colony-stimulating factor (GM-CSF). Reduced Magmas expression resulted in decreased proliferative rates in cultured cells. However, the cellular function of Magmas is still elusive. In this report, we have showed that human Magmas is an ortholog of Saccharomyces cerevisiae Pam16 having similar functions and is critical for protein translocation across mitochondrial inner membrane. Human Magmas shows a complete growth complementation of Δpam16 yeast cells at all temperatures. On the basis of our analysis, we report that Magmas localizes into mitochondria and is peripherally associated with inner mitochondrial membrane in yeast and humans. Magmas forms a stable subcomplex with J-protein Pam18 or DnaJC19 through its C-terminal region and is tethered to TIM23 complex of yeast and humans. Importantly, amino acid alterations in Magmas leads to reduced stability of the subcomplex with Pam18 that results in temperature sensitivity and in vivo protein translocation defects in yeast cells. These observations highlight the central role of Magmas in protein import and mitochondria biogenesis. In humans, absence of a functional DnaJC19 leads to dilated cardiac myophathic syndrome (DCM), a genetic disorder with characteristic features of cardiac myophathy and neurodegeneration. We propose that the mutations resulting in decreased stability of functional Magmas:DnaJC19 subcomplex at human TIM23 channel leads to impaired protein import and cellular respiration in DCM patients. Together, we propose a model showing how Magmas:DnaJC19 subcomplex is associated with TIM23 complex and thus regulates mitochondrial import process

    Mantle heterogeneity during the formation of the North Atlantic Igneous Province: Constraints from trace element and Sr-Nd-Os-O isotope systematics of Baffin Island picrites

    Get PDF
    Sr-Nd-Os-O isotope and major and trace element data from ~62 Ma picrites from Baffin Island constrain the composition of mantle sources sampled at the inception of North Atlantic Igneous Province (NAIP) magmatism. We recognize two compositional types. Depleted (N-type) lavas have low 87Sr/86Sri (0.702990–0.703060) and 187Os/188Osi (0.1220–0.1247) and high 143Nd/144Ndi (0.512989–0.512999) and are depleted in incompatible elements relative to primitive mantle. Enriched (E-type) lavas have higher 87Sr/86Sri (0.703306–0.703851) and 187Os/188Osi (0.1261–0.1303), lower 143Nd/144Ndi (0.512825–0.512906), and incompatible element concentrations similar to, or more enriched than, primitive mantle. There is also a subtle difference in oxygen isotope composition; E-type lavas are marginally lower in δ18Oolivine value (5.16–4.84‰) than N-type lavas (5.15–5.22‰). Chemical and isotopic variations between E- and N-type lavas are inconsistent with assimilation of crust and/or subcontinental lithospheric mantle and appear to instead reflect mixing between melts derived from two distinct mantle sources. Strontium-Nd-O isotope compositions and incompatible trace element abundances of N-type lavas suggest these are largely derived from the depleted upper mantle. The 187Os/188Osi ratios of N-type lavas can also be explained by such a model but require that the depleted upper mantle had γOs of approximately −5 to −7 at 62 Ma. This range overlaps the lowest γOs values measured in abyssal peridotites. Baffin Island lava compositions are also permissive of a model involving recharging of depleted upper mantle with 3He-rich material from the lower mantle (Stuart et al., Nature, 424, 57–59, 2003), with the proviso that recharge had no recognizable effect on the lithophile trace element and Sr-Nd-Os-O isotope composition. The origin of the enriched mantle component sampled by Baffin Island lavas is less clear but may be metasomatized and high-temperature-altered recycled oceanic lithosphere transported within the proto Iceland plume. Differences between Baffin Island lavas and modern Icelandic basalts suggest that a range of enriched and depleted mantle sources have been tapped since the inception of magmatism in the province. Similarities between Baffin Island lavas erupted and those of similar age from East and West Greenland also suggest that the enriched component in Baffin Island lavas may have been sampled by lavas erupted over a wide geographic range

    Cenozoic continental arc magmatism and associated mineralization in Ecuador

    Get PDF
    Most of the economic ore deposits of Ecuador are porphyry-Cu and epithermal style gold deposits associated with Tertiary continental arc magmatism. This study presents major and trace element geochemistry, as well as radiogenic isotope (Pb, Sr) signatures, of continental arc magmatic rocks of Ecuador of Eocene to Late Miocene (~50-9Ma, ELM) and Late Miocene to Recent (~8-0Ma, LMR) ages. The most primitive ELM and LMR rocks analyzed consistently display similar trace element and isotopic signatures suggesting a common origin, most likely an enriched MORB-type mantle. In contrast, major and trace element geochemistry, as well as radiogenic isotope systematics of the whole sets of ELM and LMR samples, indicate strikingly different evolutions between ELM and LMR rocks. The ELM rocks have consistently low Sr/Y, increasing Rb/Sr, and decreasing Eu/Gd with SiO2, suggesting an evolution through plagioclase-dominated fractional crystallization at shallow crustal levels (20km), and most likely at sub-crustal levels (>40-50km). The change in geochemical signatures of Tertiary magmatic rocks of Ecuador from the ELM- to the LMR-type coincides chronologically with the transition from a transpressional to a compressional regime that occurred at ~9Ma and has been attributed by other investigations to the onset of subduction of the aseismic Carnegie ridge. The major districts of porphyry-Cu and epithermal deposits of Ecuador (which have a small size, <<200Mt, when compared to their Central Andean counterparts) are spatially and temporally associated with ELM magmatic rocks. No significant porphyry-Cu and epithermal deposits (except the epithermal high-sulfidation mineralization of Quimsacocha) appear to be associated with Late Miocene-Recent (LMR, ~8-0Ma) magmatic rocks. The apparent "infertility” of LMR magmas seems to be at odds with the association of major porphyry-Cu/epithermal deposits of the Central Andes with magmatic rocks having adakite-type geochemical signatures similar to LMR rocks. The paucity of porphyry-Cu/epithermal deposits associated with LMR rocks might be only apparent and bound to exposure level, or real and bound (among other possibilities) to the lack of development of shallow crustal magmatic chambers since ~9Ma as a result of a prolonged compressional regime in the Ecuadorian crust. More work is needed to understand the actual metallogenic potential of LMR rocks in Ecuado

    Functional characterization of MCJ in the protein import into human mitochondria

    Get PDF

    Workshop on Pristine Highlands Rocks and the early History of the Moon

    Get PDF
    Oxide composition of the Moon, evidence for an initially totally molten Moon, geophysical contraints on lunar composition, random sampling of a layered intrusion, lunar highland rocks, early evolution of the Moon, mineralogy and petrology of the pristine rocks, relationship of the pristine nonmore rocks to the highlands soils and breccias, ferroan anorthositic norite, early lunar igneous history, compositional variation in ferroan anosthosites, a lunar magma ocean, deposits of lunar pristine rocks, lunar and planetary compositions and early fractionation in the solar nebula, Moon composition models, petrogenesis in a Moon with a chondritic refractory lithophile pattern, a terrestrial analog of lunar ilmenite bearing camulates, and the lunar magma ocean are summarized

    Adakitic Dacites Formed by Intracrustal Crystal Fractionation of Water-rich Parent Magmas at Nevado de Longaví Volcano (36·2°S; Andean Southern Volcanic Zone, Central Chile)

    Get PDF
    The mid-Holocene eruptive products of Nevado de Longaví volcano (36·2°S, Chile) are the only reported occurrence of adakitic volcanic rocks in the Quaternary Andean Southern Volcanic Zone (33-46°S). Dacites of this volcano are chemically distinct from other evolved magmas of the region in that they have high La/Yb (15-20) and Sr/Y (60-90) ratios and systematically lower incompatible element contents. An origin by partial melting of high-pressure crustal sources seems unlikely from isotopic and trace element considerations. Mafic enclaves quenched into one of the dacites, on the other hand, constitute plausible parental magmas. Dacites and mafic enclaves share several characteristics such as mineral chemistry, whole-rock isotope and trace element ratios, highly oxidizing conditions (NNO + 1·5 to >NNO + 2, where NNO is the nickel-nickel oxide buffer), and elevated boron contents. A two-stage mass-balance crystal fractionation model that matches both major and trace elements is proposed to explain magmatic evolution from the least evolved mafic enclave to the dacites. Amphibole is the main ferromagnesian phase in both stages of this model, in agreement with the mineralogy of the magmas. We also describe cumulate-textured xenoliths that correspond very closely to the solid assemblages predicted by the model. We conclude that Nevado de Longaví adakitic dacites are the products of polybaric fractional crystallization from exceptionally water-rich parent magmas. These basaltic magmas are inferred to be related to an exceptionally high, but transient input of slab-derived fluids released from serpentinite bodies hosted in the oceanic Mocha Fracture Zone, which projects beneath Nevado de Longaví. Fractional crystallization that is modally dominated by amphibole, with very minor garnet extraction, is a mechanism for generating adakitic magmas in cold subduction zones where a high flux of slab-derived fluids is presen
    corecore