75,791 research outputs found

    Magic Sets for Disjunctive Datalog Programs

    Get PDF
    In this paper, a new technique for the optimization of (partially) bound queries over disjunctive Datalog programs with stratified negation is presented. The technique exploits the propagation of query bindings and extends the Magic Set (MS) optimization technique. An important feature of disjunctive Datalog is nonmonotonicity, which calls for nondeterministic implementations, such as backtracking search. A distinguishing characteristic of the new method is that the optimization can be exploited also during the nondeterministic phase. In particular, after some assumptions have been made during the computation, parts of the program may become irrelevant to a query under these assumptions. This allows for dynamic pruning of the search space. In contrast, the effect of the previously defined MS methods for disjunctive Datalog is limited to the deterministic portion of the process. In this way, the potential performance gain by using the proposed method can be exponential, as could be observed empirically. The correctness of MS is established thanks to a strong relationship between MS and unfounded sets that has not been studied in the literature before. This knowledge allows for extending the method also to programs with stratified negation in a natural way. The proposed method has been implemented in DLV and various experiments have been conducted. Experimental results on synthetic data confirm the utility of MS for disjunctive Datalog, and they highlight the computational gain that may be obtained by the new method w.r.t. the previously proposed MS methods for disjunctive Datalog programs. Further experiments on real-world data show the benefits of MS within an application scenario that has received considerable attention in recent years, the problem of answering user queries over possibly inconsistent databases originating from integration of autonomous sources of information.Comment: 67 pages, 19 figures, preprint submitted to Artificial Intelligenc

    Absolute reflectance of a concave mirror used for astro-particle physics experiments

    Full text link
    The absolute reflectance of a reflector and its point spread function are the key parameters of a telescope for measuring light flux. Typically, one is using low-cost technologies for producing mirrors for the needs of astro-particle physics experiments. As a rule, these are operating telescopes in open air conditions at desert or mountainous locations, for cost reasons without protecting domes. The mirrors on such telescopes are exposed to sand in strong winds, precipitation and large temperature variations. Due to weathering, their reflectance is declining within few years. In this report we describe in a great detail the application of an in-situ method to the MAGIC imaging air Cherenkov telescopes for regularly monitoring their absolute reflectance and the point spread function. Compared to similar work that was previously performed, in this report we focus on important details of light losses due to scattering. These allowed us to further refine the method and significantly improve its precision. Also, we report on an in-situ comparison of two mirror types produced with different technologies.Comment: 24 pages, 13 figures, accepted for publication in Astroparticle Physics journa

    An Introduction to 3D User Interface Design

    Get PDF
    3D user interface design is a critical component of any virtual environment (VE) application. In this paper, we present a broad overview of three-dimensional (3D) interaction and user interfaces. We discuss the effect of common VE hardware devices on user interaction, as well as interaction techniques for generic 3D tasks and the use of traditional two-dimensional interaction styles in 3D environments. We divide most user interaction tasks into three categories: navigation, selection/manipulation, and system control. Throughout the paper, our focus is on presenting not only the available techniques, but also practical guidelines for 3D interaction design and widely held myths. Finally, we briefly discuss two approaches to 3D interaction design, and some example applications with complex 3D interaction requirements. We also present an annotated online bibliography as a reference companion to this article

    Distributed First Order Logic

    Full text link
    Distributed First Order Logic (DFOL) has been introduced more than ten years ago with the purpose of formalising distributed knowledge-based systems, where knowledge about heterogeneous domains is scattered into a set of interconnected modules. DFOL formalises the knowledge contained in each module by means of first-order theories, and the interconnections between modules by means of special inference rules called bridge rules. Despite their restricted form in the original DFOL formulation, bridge rules have influenced several works in the areas of heterogeneous knowledge integration, modular knowledge representation, and schema/ontology matching. This, in turn, has fostered extensions and modifications of the original DFOL that have never been systematically described and published. This paper tackles the lack of a comprehensive description of DFOL by providing a systematic account of a completely revised and extended version of the logic, together with a sound and complete axiomatisation of a general form of bridge rules based on Natural Deduction. The resulting DFOL framework is then proposed as a clear formal tool for the representation of and reasoning about distributed knowledge and bridge rules

    Usability dimensions in collaborative GIS

    Get PDF
    Collaborative GIS requires careful consideration of the Human-Computer Interaction (HCI) and Usability aspects, given the variety of users that are expected to use these systems, and the need to ensure that users will find the system effective, efficient, and enjoyable. The chapter explains the link between collaborative GIS and usability engineering/HCI studies. The integration of usability considerations into collaborative GIS is demonstrated in two case studies of Web-based GIS implementation. In the first, the process of digitising an area on Web-based GIS is improved to enhance the user's experience, and to allow interaction over narrowband Internet connections. In the second, server-side rendering of 3D scenes allows users who are not equipped with powerful computers to request sophisticated visualisation without the need to download complex software. The chapter concludes by emphasising the need to understand the users' context and conditions within any collaborative GIS project. © 2006, Idea Group Inc

    Integration over quantum permutation groups

    Get PDF
    We find a combinatorial formula for the Haar measure of quantum permutation groups. This leads to a dynamic formula for laws of diagonal coefficients, explaining the Poisson/free Poisson convergence result for characters.Comment: 15 page
    corecore