33 research outputs found

    Correlated Blocking in mmWave Cellular Networks: Macrodiversity, Outage, and Interference

    Get PDF
    In this paper, we provide a comprehensive analysis of macrodiversity for millimeter wave (mmWave) cellular networks. The key issue with mmWave networks is that signals are prone to blocking by objects in the environment, which causes paths to go from line-of-sight (LOS) to non-LOS (NLOS). We identify macrodiversity as an important strategy for mitigating blocking, as with macrodiversity the user will attempt to connect with two or more base stations. Diversity is achieved because if the closest base station is blocked, then the next base station might still be unblocked. However, since it is possible for a single blockage to simultaneously block the paths to two base stations, the issue of correlated blocking must be taken into account by the analysis. Our analysis characterizes the macrodiverity gain in the presence of correlated random blocking and interference. To do so, we develop a framework to determine distributions for the LOS probability, Signal to Noise Ratio (SNR), and Signal to Interference and Noise Ratio (SINR) by taking into account correlated blocking. We validate our framework by comparing our analysis, which models blockages using a random point process, with an analysis that uses real-world data to account for blockage. We consider a cellular uplink with both diversity combining and selection combining schemes. We also study the impact of blockage size and blockage density along with the effect of co-channel interference arising from other cells. We show that the assumption of independent blocking can lead to an incorrect evaluation of macrodiversity gain, as the correlation tends to decrease macrodiversity gain

    Analysis of Millimeter-Wave Networks: Blockage, Antenna Directivity, Macrodiversity, and Interference

    Get PDF
    Due to its potential to support high data rates at low latency with reasonable interference isolation because of signal blockage at these frequencies, millimeter-wave (mmWave) communications has emerged as a promising solution for next-generation wireless networks. MmWave systems are characterized by the use of highly directional antennas and susceptibility to signal blockage by buildings and other obstructions, which significantly alter the propagation environment. The received power of each transmission depends on the direction the corresponding antennas point and whether the signalโ€™s path is line-of-sight (LOS), non-LOS (i.e., partially blocked), or completely blocked. A key challenge in modeling blocking in mmWave networks is that, in actual networks, the blocking might be correlated. Such correlation arises, for example, when single transmitter tries to broadcast to pair of receivers that are close to each other, or more generally when they have a similar angle to the transmitter. In this situation, if the first receiver is blocked, it is likely that the second one is blocked, too. This dissertation explores four related but distinct issues associated with mmWave networks: 1) Analytical modeling of networks consisting of user devices and blockages with fixed or random, but independent, locations, 2) The careful characterization of correlated blocking and analysis of its impact on the performance of mmWave networks, 3) The proposed use of macrodiversity as an important strategy to mitigating correlated blocking in mmWave networks and the corresponding analysis, and 4) The proposed use of networks of unmanned aerial vehicles (UAVs) to provide connectivity in urban deployments. This work provides insight into the performance of variety of applications of mmWave communications, ranging from wireless personal area networks (WPAN), device-to-device networks, traditional terrestrial, cellular networks, and the UAV-based networks where the UAVs act as the cellular base stations. A common thread throughout this dissertation is the development of new tools based on stochastic geometry and their application to modeling and analysis. The analysis presented in this dissertation is general enough to find application beyond mmWave networks, for instance the results may also be applicable to systems that use free-space optical (FSO) signaling technologies

    ์‚ฌ์šฉ์ž ์ค‘์‹ฌ์˜ ๋ฐ€๋ฆฌ๋ฏธํ„ฐํŒŒ ํ†ต์‹  ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์ด๋™์„ฑ ์ธ์‹ ๋ถ„์„ ํ”„๋ ˆ์ž„์›Œํฌ ๋ฐ ๋„คํŠธ์›Œํฌ ๊ด€๋ฆฌ ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021. 2. ๋ฐ•์„ธ์›….Millimeter wave (mmWave) communication enables high rate transmission, but its network performance may be degraded significantly due to blockages between the transmitter and receiver. There have been two approaches to overcome the blockage effect and enhance link reliability: multi-connectivity and ultra-dense network (UDN). Particularly, multi-connectivity under a UDN environment facilitates user-centric communication. It requires dynamic configuration of serving base station groups so that each user experiences high quality services. This dissertation studies a mathematical framework and network manament schemes for user-centric mmWave communication systems. First, we models user mobility and mobility-aware performance in user-centric mmWave communication systems with multi-connectivity, and proposes a new analytical framework based on the stochastic geometry. To this end, we derive compact mathematical expressions for state transitions and probabilities of various events that each user experiences. Then we investigate mobility-aware performance in terms of network overhead and downlink throughput. This helps us to understand network operation in depth, and impacts of network density and multi-connection capability on the probability of handover related events. Numerical results verify the accuracy of our analysis and illustrate the correlation between mobility-aware performance and user speed. Next, we propose user-oriented configuration rules and price based association algorithms for user-centric mmWave networks with fully/partially wired backhauls. We develop a fair association algorithm by solving the optimization problem that we formulate for mmWave UDNs. The algorithm includes an access price based per-user request decision method and a price adjustment rule for load balancing. Based on insights from the algorithm, we develop path-aware access pricing policy for mmWave integrated access and backhaul networks. Numerical evaluations show that our proposed methods are superior to other comparative schemes. Our findings from analysis and optimization provide useful insights into the design of user-centric mmWave communication systems.๋ฐ€๋ฆฌ๋ฏธํ„ฐํŒŒ ํ†ต์‹ ์€ ๊ณ ์† ์ „์†ก์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜์ง€๋งŒ ์†ก์‹ ๊ธฐ์™€ ์ˆ˜์‹ ๊ธฐ ์‚ฌ์ด์˜ ์žฅ์• ๋ฌผ๋กœ ์ธํ•ด ๋„คํŠธ์›Œํฌ ์„ฑ๋Šฅ์ด ํฌ๊ฒŒ ์ €ํ•˜๋  ์ˆ˜ ์žˆ๋‹ค. ์žฅ์• ๋ฌผ ํšจ๊ณผ๋ฅผ ๊ทน๋ณตํ•˜๊ณ  ๋งํฌ ์•ˆ์ •์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋‹ค์ค‘ ์—ฐ๊ฒฐ ๋ฐ ๋„คํŠธ์›Œํฌ ์ดˆ๊ณ ๋ฐ€ํ™” ๋‘๊ฐ€์ง€ ์ ‘๊ทผ๋ฒ•์ด ์žˆ๋‹ค. ํŠนํžˆ ๊ฐ ์‚ฌ์šฉ์ž๊ฐ€ ๊ณ ํ’ˆ์งˆ์˜ ์„œ๋น„์Šค๋ฅผ ๊ฒฝํ—˜ํ•  ์ˆ˜ ์žˆ๋„๋ก ์„œ๋น™ ๊ธฐ์ง€๊ตญ ๊ทธ๋ฃน์˜ ๋™์  ๊ตฌ์„ฑ์ด ํ•„์š”ํ•˜๋ฏ€๋กœ ์ดˆ๊ณ ๋ฐ€๋„ ๋„คํŠธ์›Œํฌ ํ™˜๊ฒฝ์—์„œ ๋‹ค์ค‘ ์—ฐ๊ฒฐ์€ ์‚ฌ์šฉ์ž ์ค‘์‹ฌ ํ†ต์‹ ์„ ์šฉ์ดํ•˜๊ฒŒ ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์‚ฌ์šฉ์ž ์ค‘์‹ฌ์˜ ๋ฐ€๋ฆฌ๋ฏธํ„ฐํŒŒ ํ†ต์‹  ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์ˆ˜ํ•™์  ํ”„๋ ˆ์ž„์›Œํฌ์™€ ๋„คํŠธ์›Œํฌ ๊ด€๋ฆฌ ์ฒด๊ณ„๋ฅผ ์—ฐ๊ตฌํ•œ๋‹ค. ๋จผ์ € ๋‹ค์ค‘ ์—ฐ๊ฒฐ์„ ์‚ฌ์šฉํ•˜์—ฌ ์‚ฌ์šฉ์ž ์ค‘์‹ฌ์˜ ๋ฐ€๋ฆฌ๋ฏธํ„ฐํŒŒ ํ†ต์‹  ์‹œ์Šคํ…œ์—์„œ ์‚ฌ์šฉ์ž ์ด๋™์„ฑ๊ณผ ์ด๋™์„ฑ ์ธ์‹ ์„ฑ๋Šฅ ์ง€ํ‘œ๋ฅผ ๋ชจ๋ธ๋งํ•˜๊ณ  ํ™•๋ฅ ๊ธฐํ•˜๋ถ„์„์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ถ„์„ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๊ฐ ์‚ฌ์šฉ์ž๊ฐ€ ๊ฒฝํ—˜ํ•˜๋Š” ๋‹ค์–‘ํ•œ ์ด๋ฒคํŠธ์˜ ์ƒํƒœ ์ „์ด ํ™•๋ฅ ์— ๋Œ€ํ•œ ์ˆ˜ํ•™์  ํ‘œํ˜„์„ ๋„์ถœํ•œ๋‹ค. ๊ทธ๋Ÿฐ ๋‹ค์Œ ๋„คํŠธ์›Œํฌ ์˜ค๋ฒ„ํ—ค๋“œ ๋ฐ ๋‹ค์šด ๋งํฌ ์ˆ˜์œจ ์ธก๋ฉด์—์„œ ์ด๋™์„ฑ ์ธ์‹ ์„ฑ๋Šฅ์„ ์—ฐ๊ตฌํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋„คํŠธ์›Œํฌ ์šด์˜์— ๋Œ€ํ•œ ๊นŠ์ด์žˆ๋Š” ์ดํ•ด์™€ ๋„คํŠธ์›Œํฌ ๋ฐ€๋„ ๋ฐ ๋‹ค์ค‘ ์—ฐ๊ฒฐ ๊ธฐ๋Šฅ์ด ํ•ธ๋“œ ์˜ค๋ฒ„์™€ ๊ด€๋ จ๋œ ์ด๋ฒคํŠธ์˜ ํ™•๋ฅ ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ๋Š” ๋ถ„์„์˜ ์ •ํ™•์„ฑ์„ ๊ฒ€์ฆํ•˜๊ณ  ์ด๋™์„ฑ ์ธ์‹ ์„ฑ๋Šฅ๊ณผ ์‚ฌ์šฉ์ž ์†๋„ ๊ฐ„์˜ ์ƒ๊ด€ ๊ด€๊ณ„๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ๋‹ค์Œ์œผ๋กœ ์™„์ „ ๋˜๋Š” ๋ถ€๋ถ„ ์œ ์„  ๋ฐฑํ™€์ด ์žˆ๋Š” ์‚ฌ์šฉ์ž ์ค‘์‹ฌ ๋ฐ€๋ฆฌ๋ฏธํ„ฐํŒŒ ๋„คํŠธ์›Œํฌ๋ฅผ ์œ„ํ•œ ์‚ฌ์šฉ์ž ์ค‘์‹ฌ ๊ตฌ์„ฑ ๊ทœ์น™ ๋ฐ ์ ‘์† ๊ฐ€๊ฒฉ ๊ธฐ๋ฐ˜ ์—ฐ๊ฒฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๋ฐ€๋ฆฌ๋ฏธํ„ฐํŒŒ ์ดˆ๊ณ ๋ฐ€๋„ ๋„คํŠธ์›Œํฌ์— ๋Œ€ํ•œ ์ตœ์ ํ™” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜์—ฌ ๊ณต์ •ํ•œ ์—ฐ๊ฒฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•œ๋‹ค. ์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์—๋Š” ์ ‘์† ๊ฐ€๊ฒฉ ๊ธฐ๋ฐ˜ ์‚ฌ์šฉ์ž ๋ณ„ ์š”์ฒญ ๊ฒฐ์ • ๋ฐฉ๋ฒ•๊ณผ ๋กœ๋“œ ๋ฐธ๋Ÿฐ์‹ฑ์„ ์œ„ํ•œ ๊ฐ€๊ฒฉ ์กฐ์ • ๊ทœ์น™์ด ํฌํ•จ๋œ๋‹ค. ์œ„ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฐœ๋ฐœ์„ ํ†ตํ•ด ์–ป์€ ํ†ต์ฐฐ๋ ฅ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฐ€๋ฆฌ๋ฏธํ„ฐํŒŒ ํ†ตํ•ฉ ์•ก์„ธ์Šค ๋ฐ ๋ฐฑํ™€ ๋„คํŠธ์›Œํฌ๋ฅผ ์œ„ํ•œ ๊ฒฝ๋กœ ์ธ์‹ ์ ‘์† ์š”๊ธˆ ์ •์ฑ…์„ ๊ฐœ๋ฐœํ•œ๋‹ค. ์ˆ˜์น˜ ํ‰๊ฐ€์— ๋”ฐ๋ฅด๋ฉด ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์ด ๋‹ค๋ฅธ ๋น„๊ต ๊ธฐ๋ฒ•๋ณด๋‹ค ์šฐ์ˆ˜ํ•˜๋‹ค. ๋ถ„์„ ๋ฐ ์ตœ์ ํ™” ๊ฒฐ๊ณผ๋Š” ์‚ฌ์šฉ์ž ์ค‘์‹ฌ์˜ ๋ฐ€๋ฆฌ๋ฏธํ„ฐํŒŒ ํ†ต์‹  ์‹œ์Šคํ…œ ์„ค๊ณ„์— ๋Œ€ํ•œ ์œ ์šฉํ•œ ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•  ๊ฒƒ ์ด๋‹ค.Abstract i Contents iii List of Tables vi List of Figures vii 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Mobility-Aware Analysis of MillimeterWave Communication Systems with Blockages 5 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 Connectivity Model . . . . . . . . . . . . . . . . . . . . . . 10 2.2.3 Mobility Model . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Mobility-Aware Analysis . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.1 Analytical Framework . . . . . . . . . . . . . . . . . . . . . 13 2.3.2 Urban Scenario with Ultra-Densely Deployed BSs . . . . . . 18 2.3.3 Handover Analysis for Macrodiversity . . . . . . . . . . . . . 22 2.3.4 Normalized Network Overhead and Mobility-Aware Downlink Throughput with Greedy User Association . . . . . . . . 24 2.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 Association Control for User-Centric Millimeter Wave Communication Systems 34 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2.2 Channel Model and Achievable Rate . . . . . . . . . . . . . . 39 3.2.3 User Centric mmWave Communication Framework . . . . . . 39 3.3 Traffic Load Management . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.1 Optimal Association and Admission Control . . . . . . . . . 45 3.3.2 Outage Analysis . . . . . . . . . . . . . . . . . . . . . . . . 51 3.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.4.1 Evaluation Environments . . . . . . . . . . . . . . . . . . . . 53 3.4.2 Performance Comparison . . . . . . . . . . . . . . . . . . . . 55 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4 Path Selection and Path-Aware Access Pricing Policy in Millimeter Wave IAB Networks 60 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.2.1 Geographic and Pathloss Models . . . . . . . . . . . . . . . . 62 4.2.2 IAB Network Model . . . . . . . . . . . . . . . . . . . . . . 63 4.3 Path Selection Strategies . . . . . . . . . . . . . . . . . . . . . . . . 66 4.4 Path-Aware Access Pricing Policy . . . . . . . . . . . . . . . . . . . 69 4.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5 Conclusion 80 5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . 82 Abstract (In Korean) 90Docto

    Effect of correlated building blockages on the ergodic capacity of mmWave systems in urban scenarios

    Get PDF
    The millimeter waves (mmWave) bands, considered to support the forthcoming generation of mobile communications technologies, have a well-known vulnerability to blockages. Recentworks in the literature analyze the blockage probability considering independence or correlation among the blocking elements of the different links. In this letter, we characterize the effect of blockages and their correlation on the ergodic capacity. We carry out the analysis for urban scenarios, where the considered blocking elements are buildings that are primarily parallel to the streets.We also present numerical simulations based on actual building features of the city of Chicago to validate the obtained expressions.This work was supported by Agencia Estatal De Investigaciรณn, Ministerio De Ciencia e Innovaciรณn, MCIN / AEI / 10.13039/501100011033 through the Project ROUTE56 - PID2019-104945GB-I00.Peer ReviewedPostprint (author's final draft

    Robust cell-free mmWave/sub-THz access using minimal coordination and coarse synchronization

    Full text link
    This study investigates simpler alternatives to coherent joint transmission for supporting robust connectivity against signal blockage in mmWave/sub-THz access networks. By taking an information-theoretic viewpoint, we demonstrate analytically that with a careful design, full macrodiversity gains and significant SNR gains can be achieved through canonical receivers and minimal coordination and synchronization requirements at the infrastructure side. Our proposed scheme extends non-coherent joint transmission by employing a special form of diversity to counteract artificially induced deep fades that would otherwise make this technique often compare unfavorably against standard transmitter selection schemes. Additionally, the inclusion of an Alamouti-like space-time coding layer is shown to recover a significant fraction of the optimal performance. Our conclusions are based on an insightful multi-point intermittent block fading channel model that enables rigorous ergodic and outage rate analysis, while also considering timing offsets due to imperfect delay compensation. Although simplified, our approach captures the essential features of modern mmWave/sub-THz communications, thereby providing practical design guidelines for realistic systems
    corecore