144 research outputs found

    Fitting and tracking of a scene model in very low bit rate video coding

    Get PDF

    Mode decision for the H.264/AVC video coding standard

    Get PDF
    H.264/AVC video coding standard gives us a very promising future for the field of video broadcasting and communication because of its high coding efficiency compared with other older video coding standards. However, high coding efficiency also carries high computational complexity. Fast motion estimation and fast mode decision are two very useful techniques which can significantly reduce computational complexity. This thesis focuses on the field of fast mode decision. The goal of this thesis is that for very similar RD performance compared with H.264/AVC video coding standard, we aim to find new fast mode decision techniques which can afford significant time savings. [Continues.

    Supporting real time video over ATM networks

    Get PDF
    Includes bibliographical references.In this project, we propose and evaluate an approach to delimit and tag such independent video slice at the ATM layer for early discard. This involves the use of a tag cell differentiated from the rest of the data by its PTI value and a modified tag switch to facilitate the selective discarding of affected cells within each video slice as opposed to dropping of cells at random from multiple video frames

    Recent Advances in Region-of-interest Video Coding

    Get PDF

    An investigation into the requirements for an efficient image transmission system over an ATM network

    Get PDF
    This thesis looks into the problems arising in an image transmission system when transmitting over an A TM network. Two main areas were investigated: (i) an alternative coding technique to reduce the bit rate required; and (ii) concealment of errors due to cell loss, with emphasis on processing in the transform domain of DCT-based images. [Continues.

    Energy efficient enabling technologies for semantic video processing on mobile devices

    Get PDF
    Semantic object-based processing will play an increasingly important role in future multimedia systems due to the ubiquity of digital multimedia capture/playback technologies and increasing storage capacity. Although the object based paradigm has many undeniable benefits, numerous technical challenges remain before the applications becomes pervasive, particularly on computational constrained mobile devices. A fundamental issue is the ill-posed problem of semantic object segmentation. Furthermore, on battery powered mobile computing devices, the additional algorithmic complexity of semantic object based processing compared to conventional video processing is highly undesirable both from a real-time operation and battery life perspective. This thesis attempts to tackle these issues by firstly constraining the solution space and focusing on the human face as a primary semantic concept of use to users of mobile devices. A novel face detection algorithm is proposed, which from the outset was designed to be amenable to be offloaded from the host microprocessor to dedicated hardware, thereby providing real-time performance and reducing power consumption. The algorithm uses an Artificial Neural Network (ANN), whose topology and weights are evolved via a genetic algorithm (GA). The computational burden of the ANN evaluation is offloaded to a dedicated hardware accelerator, which is capable of processing any evolved network topology. Efficient arithmetic circuitry, which leverages modified Booth recoding, column compressors and carry save adders, is adopted throughout the design. To tackle the increased computational costs associated with object tracking or object based shape encoding, a novel energy efficient binary motion estimation architecture is proposed. Energy is reduced in the proposed motion estimation architecture by minimising the redundant operations inherent in the binary data. Both architectures are shown to compare favourable with the relevant prior art

    Robust error detection methods for H.264/AVC videos

    Get PDF
    The 3rd generation of mobile systems is mainly focused on enabling multimedia services such as video streaming, video call and conferencing. In order to achieve this, the Universal Mobile Telecommunications System (UMTS), is the standard that has been developed by the 3rd Generation Partnership ect (3GPP) in Europe, including the baseline profile of H.264/AVC in the specification. With the union of both technologies a great improvement on video transmission over mobile networks, and even modification of the user habits towards the use of the mobile phone is expected. Nevertheless, video transmission has always been related to wired networks and unfortunately the migration to wireless networks is not as easy as it seems. In real time applications the delay is a critical constraint. Usually, transmission protocols without delivery warranties, like the User Network Protocol (UDP) for IP based networks, are used. This works under the assumption that in real time applications dropped packets are preferable to delayed packets. Moreover, in UMTS the network needs to be treated in a different way, thus the wireless channel is a prone error channel due to its high time variance. Typically, when transmitting video, the receiver checks whether the information packet is corrupted (by means of a checksum) or if its temporal mark exceeds the specified delay. This approach is suboptimal, due to the fact that perhaps the video information is not damaged and could still be used. Instead, residual redundancy on the video stream can be used to locate the errors in the corrupted packet, increasing the granularity of the typical upper-layer checksum error detection. Based on this, the amount of information previous to the error detection can be decoded as usually. The aim of this thesis is to combine some of the more effective methods concretely, Syntax check, Watermarking and Checksum schemes have been reformulated, combined and simulated

    Algorithms & implementation of advanced video coding standards

    Get PDF
    Advanced video coding standards have become widely deployed coding techniques used in numerous products, such as broadcast, video conference, mobile television and blu-ray disc, etc. New compression techniques are gradually included in video coding standards so that a 50% compression rate reduction is achievable every five years. However, the trend also has brought many problems, such as, dramatically increased computational complexity, co-existing multiple standards and gradually increased development time. To solve the above problems, this thesis intends to investigate efficient algorithms for the latest video coding standard, H.264/AVC. Two aspects of H.264/AVC standard are inspected in this thesis: (1) Speeding up intra4x4 prediction with parallel architecture. (2) Applying an efficient rate control algorithm based on deviation measure to intra frame. Another aim of this thesis is to work on low-complexity algorithms for MPEG-2 to H.264/AVC transcoder. Three main mapping algorithms and a computational complexity reduction algorithm are focused by this thesis: motion vector mapping, block mapping, field-frame mapping and efficient modes ranking algorithms. Finally, a new video coding framework methodology to reduce development time is examined. This thesis explores the implementation of MPEG-4 simple profile with the RVC framework. A key technique of automatically generating variable length decoder table is solved in this thesis. Moreover, another important video coding standard, DV/DVCPRO, is further modeled by RVC framework. Consequently, besides the available MPEG-4 simple profile and China audio/video standard, a new member is therefore added into the RVC framework family. A part of the research work presented in this thesis is targeted algorithms and implementation of video coding standards. In the wide topic, three main problems are investigated. The results show that the methodologies presented in this thesis are efficient and encourage

    A multi-objective performance optimisation framework for video coding

    Get PDF
    Digital video technologies have become an essential part of the way visual information is created, consumed and communicated. However, due to the unprecedented growth of digital video technologies, competition for bandwidth resources has become fierce. This has highlighted a critical need for optimising the performance of video encoders. However, there is a dual optimisation problem, wherein, the objective is to reduce the buffer and memory requirements while maintaining the quality of the encoded video. Additionally, through the analysis of existing video compression techniques, it was found that the operation of video encoders requires the optimisation of numerous decision parameters to achieve the best trade-offs between factors that affect visual quality; given the resource limitations arising from operational constraints such as memory and complexity. The research in this thesis has focused on optimising the performance of the H.264/AVC video encoder, a process that involved finding solutions for multiple conflicting objectives. As part of this research, an automated tool for optimising video compression to achieve an optimal trade-off between bit rate and visual quality, given maximum allowed memory and computational complexity constraints, within a diverse range of scene environments, has been developed. Moreover, the evaluation of this optimisation framework has highlighted the effectiveness of the developed solution
    corecore