59 research outputs found

    Full Gradient Stabilized Cut Finite Element Methods for Surface Partial Differential Equations

    Get PDF
    We propose and analyze a new stabilized cut finite element method for the Laplace-Beltrami operator on a closed surface. The new stabilization term provides control of the full R3\mathbb{R}^3 gradient on the active mesh consisting of the elements that intersect the surface. Compared to face stabilization, based on controlling the jumps in the normal gradient across faces between elements in the active mesh, the full gradient stabilization is easier to implement and does not significantly increase the number of nonzero elements in the mass and stiffness matrices. The full gradient stabilization term may be combined with a variational formulation of the Laplace-Beltrami operator based on tangential or full gradients and we present a simple and unified analysis that covers both cases. The full gradient stabilization term gives rise to a consistency error which, however, is of optimal order for piecewise linear elements, and we obtain optimal order a priori error estimates in the energy and L2L^2 norms as well as an optimal bound of the condition number. Finally, we present detailed numerical examples where we in particular study the sensitivity of the condition number and error on the stabilization parameter.Comment: 20 pages, 4 figures, 5 tables. arXiv admin note: text overlap with arXiv:1507.0583

    Multilevel preconditioning based on discrete symmetrization for convection-diffusion equations

    Get PDF
    AbstractThe subject of this paper is an additive multilevel preconditioning approach for convection-diffusion problems. Our particular interest is in the convergence behavior for convection-dominated problems which are discretized by the streamline diffusion method. The multilevel preconditioner is based on a transformation of the discrete problem which reduces the relative size of the skew-symmetric part of the operator. For the constant coefficient case, an analysis of the convergence properties of this multilevel preconditioner is given in terms of its dependence on the convection size. Moreover, the results of computational experiments for more general convection-diffusion problems are presented and our new preconditioner is compared to standard multilevel preconditioning

    End-to-end GPU acceleration of low-order-refined preconditioning for high-order finite element discretizations

    Full text link
    In this paper, we present algorithms and implementations for the end-to-end GPU acceleration of matrix-free low-order-refined preconditioning of high-order finite element problems. The methods described here allow for the construction of effective preconditioners for high-order problems with optimal memory usage and computational complexity. The preconditioners are based on the construction of a spectrally equivalent low-order discretization on a refined mesh, which is then amenable to, for example, algebraic multigrid preconditioning. The constants of equivalence are independent of mesh size and polynomial degree. For vector finite element problems in H(curl)H({\rm curl}) and H(div)H({\rm div}) (e.g. for electromagnetic or radiation diffusion problems) a specially constructed interpolation-histopolation basis is used to ensure fast convergence. Detailed performance studies are carried out to analyze the efficiency of the GPU algorithms. The kernel throughput of each of the main algorithmic components is measured, and the strong and weak parallel scalability of the methods is demonstrated. The different relative weighting and significance of the algorithmic components on GPUs and CPUs is discussed. Results on problems involving adaptively refined nonconforming meshes are shown, and the use of the preconditioners on a large-scale magnetic diffusion problem using all spaces of the finite element de Rham complex is illustrated.Comment: 23 pages, 13 figure

    Graph coarsening: From scientific computing to machine learning

    Full text link
    The general method of graph coarsening or graph reduction has been a remarkably useful and ubiquitous tool in scientific computing and it is now just starting to have a similar impact in machine learning. The goal of this paper is to take a broad look into coarsening techniques that have been successfully deployed in scientific computing and see how similar principles are finding their way in more recent applications related to machine learning. In scientific computing, coarsening plays a central role in algebraic multigrid methods as well as the related class of multilevel incomplete LU factorizations. In machine learning, graph coarsening goes under various names, e.g., graph downsampling or graph reduction. Its goal in most cases is to replace some original graph by one which has fewer nodes, but whose structure and characteristics are similar to those of the original graph. As will be seen, a common strategy in these methods is to rely on spectral properties to define the coarse graph

    An adaptive, fully implicit multigrid phase-field model for the quantitative simulation of non-isothermal binary alloy solidification

    Get PDF
    Using state-of-the-art numerical techniques, such as mesh adaptivity, implicit time-stepping and a non-linear multi-grid solver, the phase-field equations for the non-isothermal solidification of a dilute binary alloy have been solved. Using the quantitative, thin-interface formulation of the problem we have found that at high Lewis number a minimum in the dendrite tip radius is predicted with increasing undercooling, as predicted by marginal stability theory. Over the dimensionless undercooling range 0.2–0.8 the radius selection parameter, σ*, was observed to vary by over a factor of 2 and in a non-monotonic fashion, despite the anisotropy strength being constant

    A diffuse interface model for quasi-incompressible flows: Sharp interface limits and numerics

    Get PDF
    In this contribution, we investigate a diffuse interface model for quasi-incompressible flows. We determine corresponding sharp interface limits of two different scalings. The sharp interface limit is deduced by matched asymptotic expansions of the fields in powers of the interface. In particular, we study solutions of the derived system of inner equations and discuss the results within the general setting of jump conditions for sharp interface models. Furthermore, we treat, as a subproblem, the convective Cahn-Hilliard equation numerically by a Local Discontinuous Galerkin scheme

    Divergence-free cut finite element methods for Stokes flow

    Full text link
    We develop two unfitted finite element methods for the Stokes equations based on Hdiv\mathbf{H}^{\text{div}}-conforming finite elements. The first method is a cut finite element discretization of the Stokes equations based on the Brezzi-Douglas-Marini elements and involves interior penalty terms to enforce tangential continuity of the velocity at interior edges in the mesh. The second method is a cut finite element discretization of a three-field formulation of the Stokes problem involving the vorticity, velocity, and pressure and uses the Raviart-Thomas space for the velocity. We present mixed ghost penalty stabilization terms for both methods so that the resulting discrete problems are stable and the divergence-free property of the Hdiv\mathbf{H}^{\text{div}}-conforming elements is preserved also for unfitted meshes. We compare the two methods numerically. Both methods exhibit robust discrete problems, optimal convergence order for the velocity, and pointwise divergence-free velocity fields, independently of the position of the boundary relative to the computational mesh

    Efficiency and scalability of a two-level Schwarz Algorithm for incompressible and compressible flows

    Get PDF
    International audienceThis paper studies the application of two-level Schwarz algorithms to several models of Computational Fluid Dynamics. The purpose is to build an algorithm suitable for elliptic and convective models. The sub-domain approximated solution relies on the incomplete lower-upper factorisation (ILU). The algebraic coupling between the coarse grid and the Schwarz preconditioner is discussed. The Deflation Method (DM) and the Balancing Domain Decomposition (BDD) Method are studied for introducing the coarse grid correction as a preconditioner. Standard coarse grids are built with the characteristic or indicator functions of the sub-domains. The building of a set of smooth basis functions (analogous to smoothed-aggregation methods) is considered. A first test problem is the Poisson problem with a discontinuous coefficient. The two options are compared for the standpoint of coarse-grid consistency and for the gain in scalability of the global Schwarz iteration. The advection-diffusion model is then considered as a second test problem. Extensions to compressible flows (together with incompressible flows for comparison) are then proposed. Parallel applications are presented and their performance measured
    • …
    corecore