157 research outputs found

    Macro-continuous computed torque algorithm for a three-dimensional eel-like robot

    Get PDF
    International audienceThis paper presents the dynamic modeling of a continuous three-dimensional swimming eel-like robot. The modeling approach is based on the "geometrically exact beam theory" and on that of Newton-Euler, as it is well known within the robotics community. The proposed algorithm allows us to compute the robot's Galilean movement and the control torques as a function of the expected internal deformation of the eel's body

    Fast Dynamics of a three dimensional eel-like robot: comparisons with Navier-Stokes simulations

    Get PDF
    International audienceThis article proposes a dynamic model of the swim of elongated ï°£shes suited to the on-line control of bio-mimetic eel-like robots. The approach is analytic and can be considered as an extension of the original reactive "Large-Elongated-Body-Theory" of Lighthill to the three dimensional self propulsion augmented of a resistive empirical model. While all the mathematical fundamentals are detailed in [1], this article essentially focuses on the numerical validation and calibration of the model and the study of swimming gaits. The proposed model is coupled to an algorithm allowing us to compute the motion of the ï°£sh head and the ï°£eld of internal control torque from the knowledge of the imposed internal strain ï°£elds. Based on the Newton-Euler formalism of robots dynamics, this algorithm works faster than real time. As far as precision is concerned, many tests obtained with several planar and three dimensional gaits are reported and compared (in the planar case) with a Navier-Stokes solver, devoted until today to the planar swim. The comparisons obtained are very encouraging since in all the cases we tested, the diï°¢erences between our simpliï°£ed and reference simulations do not exceed ten per cent

    Poincaré-Cosserat equations for Lighthill three-dimensional dynamic model of a self propelled eel devoted to Robotics

    Get PDF
    International audienceIn this article, we propose a dynamic model of the three-dimensional eel swim. This model is analytical and suited to the on-line control of eel-like robots. The proposed solution is based on the Large Amplitude Elongated Body Theory of Lighthill and a working frame recently proposed in [1] for the dynamic modeling of hyper-redundant robots. This working frame was named "macro-continuous" since at this macroscopic scale, the robot (or the animal) is considered as a Cosserat beam internally (and continuously) actuated. This article proposes new results in two directions. Firstly, it achieves an extension of the Lighthill theory to the case of a self propelled body swimming in three dimensions, while including a model of the internal control torque. Secondly, this generalization of the Lighthill model is achieved due to a new set of equations which is also derived in this article. These equations generalize the Poincaré equations of a Cosserat beam to the case of an open system containing a fluid stratified around the slender beam

    Macro-continuous dynamics for hyper-redundant robots: application to locomotion bio-inspired by elongated animals

    Get PDF
    International audienceThis article presents a unified dynamic modeling approach of continuum robots. The robot is modeled as a geometrically exact beam continuously actuated through an active strain law. Once included into the geometric mechanics of locomotion, the approach applies to any hyper-redundant or continuous robot devoted to manipulation and/or locomotion. Furthermore, exploiting the nature of the resulting models as being a continuous version of the Newton-Euler models of discrete robots, an algorithm is proposed which is capable of computing the internal control torques (and/or forces) as well as the rigid overall motions of the locomotor robot. The efficiency of the approach is finally illustrated through many examples directly related to the terrestrial locomotion of elongated animals as snakes, worms or caterpillars and their associated bio-mimetic artifacts

    Discrete Cosserat Approach for Multi-Section Soft Robots Dynamics

    Full text link
    In spite of recent progress, soft robotics still suffers from a lack of unified modeling framework. Nowadays, the most adopted model for the design and control of soft robots is the piece-wise constant curvature model, with its consolidated benefits and drawbacks. In this work, an alternative model for multisection soft robots dynamics is presented based on a discrete Cosserat approach, which, not only takes into account shear and torsional deformations, essentials to cope with out-of-plane external loads, but also inherits the geometrical and mechanical properties of the continuous Cosserat model, making it the natural soft robotics counterpart of the traditional rigid robotics dynamics model. The soundness of the model is demonstrated through extensive simulation and experimental results for both plane and out-of-plane motions.Comment: 13 pages, 9 figure

    Forward dynamics of continuum and soft robots: a strain parametrization based approach

    Get PDF
    soumis à IEEE TROIn this article we propose a new solution to the forward dynamics of Cosserat beams with in perspective, its application to continuum and soft robotics manipulation and locomotion. In contrast to usual approaches, it is based on the non-linear parametrization of the beam shape by its strain fields and their discretization on a functional basis of strain modes. While remaining geometrically exact, the approach provides a minimal set of ordinary differential equations in the usual Lagrange matrix form that can be solved with standard explicit time-integrators. Inspired from rigid robotics, the calculation of the matrices of the Lagrange model is performed with a continuous inverse Newton-Euler algorithm. The approach is tested on several numerical benches of non-linear structural statics, as well as further examples illustrating its capabilities for dynamics

    Kinematic modeling of a bio-inspired robotic fish

    Full text link
    This paper proposes a kinematic modeling method for a bio-inspired robotic fish based on single joint. Lagrangian function of freely swimming robotic fish is built based on a simplified geometric model. In order to build the kinematic model, the fluid force acting on the robotic fish is divided into three parts: the pressure on links, the approach stream pressure and the frictional force. By solving Lagrange\u27s equation of the second kind and the fluid force, the movement of robotic fish is obtained. The robotic fish\u27s motion, such as propelling and turning are simulated, and experiments are taken to verify the model.<br /

    Developing and Testing an Anguilliform Robot Swimming with Theoretically High Hydrodynamic Efficiency

    Get PDF
    An anguilliform swimming robot replicating an idealized motion is a complex marine vehicle necessitating both a theoretical and experimental analysis to completely understand its propulsion characteristics. The ideal anguilliform motion within is theorized to produce ``wakeless\u27\u27 swimming (Vorus, 2011), a reactive swimming technique that produces thrust by accelerations of the added mass in the vicinity of the body. The net circulation for the unsteady motion is theorized to be eliminated. The robot was designed to replicate the desired, theoretical motion by applying control theory methods. Independent joint control was used due to hardware limitations. The fluid velocity vectors in the propulsive wake downstream of the tethered, swimming robot were measured using Particle Image Velocimetry (PIV). Simultaneously, a load cell measured the thrust (or drag) forces of the robot via a hydrodynamic tether. The measured field velocities and thrust forces were compared to the theoretical predictions for each. The desired, ideal motion was not replicated consistently during PIV testing, producing off-design scenarios. The thrust-computing method for the ideal motion was applied to the actual, recorded motion and compared to the load cell results. The theoretical field velocities were computed differently by accounting for shed vortices due to a different shape than ideal. The theoretical thrust shows trends similar to the measured thrust over time. Similarly promising comparisons are found between the theoretical and measured flow-field velocities with respect to qualitative trends and velocity magnitudes. The initial thrust coefficient prediction was deemed insufficient, and a new one was determined from an iterative process. The off-design cases shed flow structures into the downstream wake of the robot. The first is a residual disturbance of the shed boundary layer, which is to be expected for the ideal case, and dissipates within one motion cycle. The second are larger-order vortices that are being shed at two distinct times during a half-cycle. These qualitative and quantitative comparisons were used to confirm the possibility of the original hypothesis of ``wakeless\u27\u27 swimming. While the ideal motion could not be tested consistently, the results of the off-design cases agree significantly with the adjusted theoretical computations. This shows that the boundary conditions derived from slender-body constraints and the assumptions of ideal flow theory are sufficient enough to predict the propulsion characteristics of an anguilliform robot undergoing this specific motion
    • …
    corecore