520 research outputs found

    Mackey-complete spaces and power series -- A topological model of Differential Linear Logic

    Get PDF
    In this paper, we have described a denotational model of Intuitionist Linear Logic which is also a differential category. Formulas are interpreted as Mackey-complete topological vector space and linear proofs are interpreted by bounded linear functions. So as to interpret non-linear proofs of Linear Logic, we have used a notion of power series between Mackey-complete spaces, generalizing the notion of entire functions in C. Finally, we have obtained a quantitative model of Intuitionist Differential Linear Logic, where the syntactic differentiation correspond to the usual one and where the interpretations of proofs satisfy a Taylor expansion decomposition

    Taylor expansion for Call-By-Push-Value

    Get PDF
    The connection between the Call-By-Push-Value lambda-calculus introduced by Levy and Linear Logic introduced by Girard has been widely explored through a denotational view reflecting the precise ruling of resources in this language. We take a further step in this direction and apply Taylor expansion introduced by Ehrhard and Regnier. We define a resource lambda-calculus in whose terms can be used to approximate terms of Call-By-Push-Value. We show that this approximation is coherent with reduction and with the translations of Call-By-Name and Call-By-Value strategies into Call-By-Push-Value

    Bohrification

    Get PDF
    New foundations for quantum logic and quantum spaces are constructed by merging algebraic quantum theory and topos theory. Interpreting Bohr's "doctrine of classical concepts" mathematically, given a quantum theory described by a noncommutative C*-algebra A, we construct a topos T(A), which contains the "Bohrification" B of A as an internal commutative C*-algebra. Then B has a spectrum, a locale internal to T(A), the external description S(A) of which we interpret as the "Bohrified" phase space of the physical system. As in classical physics, the open subsets of S(A) correspond to (atomic) propositions, so that the "Bohrified" quantum logic of A is given by the Heyting algebra structure of S(A). The key difference between this logic and its classical counterpart is that the former does not satisfy the law of the excluded middle, and hence is intuitionistic. When A contains sufficiently many projections (e.g. when A is a von Neumann algebra, or, more generally, a Rickart C*-algebra), the intuitionistic quantum logic S(A) of A may also be compared with the traditional quantum logic, i.e. the orthomodular lattice of projections in A. This time, the main difference is that the former is distributive (even when A is noncommutative), while the latter is not. This chapter is a streamlined synthesis of 0709.4364, 0902.3201, 0905.2275.Comment: 44 pages; a chapter of the first author's PhD thesis, to appear in "Deep Beauty" (ed. H. Halvorson

    Bibliographie

    Get PDF
    • …
    corecore