27,459 research outputs found

    Implementation of Communication Technology LTE Cat-M1 Utilizing the Network Simulator 3

    Get PDF
    Diplomová práce se zabývá implementací komunikační technologie LTE Cat-M1 v simulačním nástroji NS-3 (Network Simulator 3). V teoretické části práce jsou shrnuty klíčové pojmy týkající se IoT (Internet of Things), M2M (Machine-to-Machine) komunikace, mobilních sítí LTE (Long Term Evolution) a LPWA (Low-Power Wide Area) sítí. Praktická část práce shrnuje možnosti aktuálně dostupných modulů pro celulární technologie pro NS-3, tj. modul LENA a následné rozšíření LENA+ a ELENA. Následně vytvořené simulační scénáře nabízí porovnání technologií LTE/LTE-A a LTE Cat-M1 (označována také jako eMTC - enhanced Machine Type Communication) pro M2M komunikaci. Výsledky simulací jsou přehledně zpracovány formou grafů a diskutovány v závěru práce.Diploma thesis deals with the implementation of LTE Cat-M1 technology in simulator NS--3 (Network Simulator 3). The theoretical part of the thesis summarizes key terms concerning IoT (Internet of Things), M2M (Machine-to-Machine) communication, LTE (Long Term Evolution) and LPWA (Low-Power Wide Area) networks. The practical part summarizes the possibilities of currently available modules for cellular technologies for NS-3, ie. the LENA module and the subsequent extension of LENA+ and ELENA. Simulation scenarios offer a comparison of LTE/LTE-A and LTE Cat-M1 (also known as eMTC - enhanced Machine Type Communication) technologies for M2M communication. The results of the simulations are well-arranged in the form of graphs and discussed at the end of the thesis.

    Simulating device-to-device communications in OMNeT++ with SimuLTE: scenarios and configurations

    Get PDF
    SimuLTE is a tool that enables system-level simulations of LTE/LTE-Advanced networks within OMNeT++. It is designed such that it can be plugged within network elements as an additional Network Interface Card (NIC) to those already provided by the INET framework (e.g. Wi-Fi). Recently, device-to-device (D2D) technology has been widely studied by the research community, as a mechanism to allow direct communications between devices of a LTE cellular network. In this work, we present how SimuLTE can be employed to simulate both one-to-one and one-to-many D2D communications, so that the latter can be exploited as a new communication opportunity in several research fields, like vehicular networks, IoT and machine-to-machine (M2M) applications

    Analysis of the LTE Access Reservation Protocol for Real-Time Traffic

    Get PDF
    LTE is increasingly seen as a system for serving real-time Machine-to-Machine (M2M) communication needs. The asynchronous M2M user access in LTE is obtained through a two-phase access reservation protocol (contention and data phase). Existing analysis related to these protocols is based on the following assumptions: (1) there are sufficient resources in the data phase for all detected contention tokens, and (2) the base station is able to detect collisions, i.e., tokens activated by multiple users. These assumptions are not always applicable to LTE - specifically, (1) due to the variable amount of available data resources caused by variable load, and (2) detection of collisions in contention phase may not be possible. All of this affects transmission of real-time M2M traffic, where data packets have to be sent within a deadline and may have only one contention opportunity. We analyze the features of the two-phase LTE reservation protocol and derive its throughput, i.e., the number of successful transmissions in the data phase, when assumptions (1) and (2) do not hold.Comment: 4 Pages, 4 Figures, Accepted in IEEE Communication Letters on the 20th of May 201

    Infinite Factorial Finite State Machine for Blind Multiuser Channel Estimation

    Full text link
    New communication standards need to deal with machine-to-machine communications, in which users may start or stop transmitting at any time in an asynchronous manner. Thus, the number of users is an unknown and time-varying parameter that needs to be accurately estimated in order to properly recover the symbols transmitted by all users in the system. In this paper, we address the problem of joint channel parameter and data estimation in a multiuser communication channel in which the number of transmitters is not known. For that purpose, we develop the infinite factorial finite state machine model, a Bayesian nonparametric model based on the Markov Indian buffet that allows for an unbounded number of transmitters with arbitrary channel length. We propose an inference algorithm that makes use of slice sampling and particle Gibbs with ancestor sampling. Our approach is fully blind as it does not require a prior channel estimation step, prior knowledge of the number of transmitters, or any signaling information. Our experimental results, loosely based on the LTE random access channel, show that the proposed approach can effectively recover the data-generating process for a wide range of scenarios, with varying number of transmitters, number of receivers, constellation order, channel length, and signal-to-noise ratio.Comment: 15 pages, 15 figure

    D2D Communications for Large-Scale Fog Platforms: Enabling Direct M2M Interactions

    Get PDF
    To many, fog computing is considered the next step beyond the current centralized cloud that will support the forthcoming Internet of Things (IoT) revolution. While IoT devices will still communicate with applications running in the cloud, localized fog clusters will appear with IoT devices communicating with application logic running on a proximate fog node. This will add proximity-based machine-to-machine (M2M) communications to standard cloud-computing traffic, and it calls for efficient mobility management for entire fog clusters and energy-efficient communication within them. In this context, long-term evolution-advanced (LTE-A) technology is expected to play a major role as a communication infrastructure that guarantees low deployment costs, native mobility support, and plug-and-play seamless configuration. We investigate the role of LTE-A in future large-scale IoT systems. In particular, we analyze how the recently standardized device-to-device (D2D) communication mode can be exploited to effectively enable direct M2M interactions within fog clusters, and we assess the expected benefits in terms of network resources and energy consumption. Moreover, we show how the fog-cluster architecture, and its localized-communication paradigm, can be leveraged to devise enhanced mobility management, building on what LTE-A already has to offer

    Authentication groups with privacy-protection of machine in LTE/LTE-A networks

    Get PDF
    Machine-type Communication (MTC) is a form of data communication which involves one or more entities that do not necessarily need human interaction, which has become the hotspot in industry area. Furthermore, Machine-Type Communication (MTC) has shown the advantages, including better coverage and lower network deployment cost, which makes it become the hotspot in industry area. However, the current cellular network is designed for human-to-human communication (H2H), and less optimal for machine-to-machine, machine-to-human or human-to-machine applications. In addition, current cellular network is less optimal for MTC applications,and now facing some urgent issues, e.g. congestion and overload caused by the access of masses of MTC devices. This paper shows the techniques that used in MTC for LTE/LTE-A networks to enhance the authentication protocols with reduce signaling overhead and computational cost. Furthermore, this work discussed the problems that causing signaling overload in the core network especially, when a group of MTCD try to get authenticate to the system at the same time

    Kapeankaistan LTE koneiden välisessä satelliittitietoliikenteessä

    Get PDF
    Recent trends to wireless Machine-to-Machine (M2M) communication and Internet of Things (IoT) has created a new demand for more efficient low-throughput wireless data connections. Beside the traditional wireless standards, focused on high bandwidth data transfer, has emerged a new generation of Low Power Wide Area Networks (LPWAN) which targets for less power demanding low-throughput devices requiring inexpensive data connections. Recently released NB-IoT (Narrowband IoT) specification extends the existing 4G/LTE standard allowing more easily accessible LPWAN cellular connectivity for IoT devices. Narrower bandwidth and lower data rates combined to a simplified air interface make it less resource demanding still benefiting from the widely spread LTE technologies and infrastructure. %% Applications & Why space Applications, such as wide scale sensor or asset tracking networks, can benefit from a global scale network coverage and easily available low-cost user equipment which could be made possible by new narrowband IoT satellite networks. In this thesis, the NB-IoT specification and its applicability for satellite communication is discussed. Primarily, LTE and NB-IoT standards are designed only for terrestrial and their utilization in Earth-to-space communication raises new challenges, such as timing and frequency synchronization requirements when utilizing Orthogonal Frequency Signal Multiplexing (OFDM) techniques. Many of these challenges can be overcome by specification adaptations and other existing techniques making minimal changes to the standard and allowing extension of the terrestrial cellular networks to global satellite access.Viimeaikaiset kehitystrendit koneiden välisessä kommunikaatiossa (Machine to Machine Communication, M2M) ja esineiden Internet (Internet of Things, IoT) -sovelluksissa ovat luoneet perinteisteisten nopean tiedonsiirron langattomien standardien ohelle uuden sukupolven LPWAN (Low Power Wide Area Networks) -tekniikoita, jotka ovat tarkoitettu pienitehoisille tiedonsiirtoa tarvitseville sovelluksille. Viimeaikoina yleistynyt NB-IoT standardi laajentaa 4G/LTE standardia mahdollistaen entistä matalamman virrankulutuksen matkapuhelinyhteydet IoT laitteissa. Kapeampi lähetyskaista ja hitaampi tiedonsiirtonopeus yhdistettynä yksinkertaisempaan ilmarajapintaan mahdollistaa pienemmän resurssivaatimukset saman aikaan hyötyen laajalti levinneistä LTE teknologioista ja olemassa olevasta infrastruktuurista. Useissa sovelluskohteissa, kuten suurissa sensoriverkoissa, voitaisiin hyötyä merkittävästi globaalista kattavuudesta yhdistettynä edullisiin helposti saataviin päätelaitteisiin. Tässä työssä käsitellään NB-IoT standardia ja sen soveltuvuutta satellittitietoliikenteeseen. LTE ja NB-IoT ovat kehitty maanpääliseen tietoliikenteeseen ja niiden hyödyntäminen avaruuden ja maan välisessä kommunikaatiossa aiheuttaa uusia haasteita esimerkiksi aika- ja taajuussynkronisaatiossa ja OFDM (Orthogonal Frequency Signal Multiplexing) -tekniikan hyödyntämisessä. Nämä haasteet voidaan ratkaista soveltamalla spesifikaatiota sekä muilla jo olemassa olevilla tekniikoilla tehden mahdollisimman vähän muutoksia alkuperäiseen standardiin, ja täten sallien maanpäälisten IoT verkkojen laajenemisen avaruuteen
    corecore