7,441 research outputs found

    Be Your Own Teacher: Improve the Performance of Convolutional Neural Networks via Self Distillation

    Full text link
    Convolutional neural networks have been widely deployed in various application scenarios. In order to extend the applications' boundaries to some accuracy-crucial domains, researchers have been investigating approaches to boost accuracy through either deeper or wider network structures, which brings with them the exponential increment of the computational and storage cost, delaying the responding time. In this paper, we propose a general training framework named self distillation, which notably enhances the performance (accuracy) of convolutional neural networks through shrinking the size of the network rather than aggrandizing it. Different from traditional knowledge distillation - a knowledge transformation methodology among networks, which forces student neural networks to approximate the softmax layer outputs of pre-trained teacher neural networks, the proposed self distillation framework distills knowledge within network itself. The networks are firstly divided into several sections. Then the knowledge in the deeper portion of the networks is squeezed into the shallow ones. Experiments further prove the generalization of the proposed self distillation framework: enhancement of accuracy at average level is 2.65%, varying from 0.61% in ResNeXt as minimum to 4.07% in VGG19 as maximum. In addition, it can also provide flexibility of depth-wise scalable inference on resource-limited edge devices.Our codes will be released on github soon.Comment: 10page

    Synesthesia: Detecting Screen Content via Remote Acoustic Side Channels

    Full text link
    We show that subtle acoustic noises emanating from within computer screens can be used to detect the content displayed on the screens. This sound can be picked up by ordinary microphones built into webcams or screens, and is inadvertently transmitted to other parties, e.g., during a videoconference call or archived recordings. It can also be recorded by a smartphone or "smart speaker" placed on a desk next to the screen, or from as far as 10 meters away using a parabolic microphone. Empirically demonstrating various attack scenarios, we show how this channel can be used for real-time detection of on-screen text, or users' input into on-screen virtual keyboards. We also demonstrate how an attacker can analyze the audio received during video call (e.g., on Google Hangout) to infer whether the other side is browsing the web in lieu of watching the video call, and which web site is displayed on their screen

    Learning-based Analysis on the Exploitability of Security Vulnerabilities

    Get PDF
    The purpose of this thesis is to develop a tool that uses machine learning techniques to make predictions about whether or not a given vulnerability will be exploited. Such a tool could help organizations such as electric utilities to prioritize their security patching operations. Three different models, based on a deep neural network, a random forest, and a support vector machine respectively, are designed and implemented. Training data for these models is compiled from a variety of sources, including the National Vulnerability Database published by NIST and the Exploit Database published by Offensive Security. Extensive experiments are conducted, including testing the accuracy of each model, dynamically training the models on a rolling window of training data, and filtering the training data by various features. Of the chosen models, the deep neural network and the support vector machine show the highest accuracy (approximately 94% and 93%, respectively), and could be developed by future researchers into an effective tool for vulnerability analysis

    Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning

    Full text link
    Deep Learning has recently become hugely popular in machine learning, providing significant improvements in classification accuracy in the presence of highly-structured and large databases. Researchers have also considered privacy implications of deep learning. Models are typically trained in a centralized manner with all the data being processed by the same training algorithm. If the data is a collection of users' private data, including habits, personal pictures, geographical positions, interests, and more, the centralized server will have access to sensitive information that could potentially be mishandled. To tackle this problem, collaborative deep learning models have recently been proposed where parties locally train their deep learning structures and only share a subset of the parameters in the attempt to keep their respective training sets private. Parameters can also be obfuscated via differential privacy (DP) to make information extraction even more challenging, as proposed by Shokri and Shmatikov at CCS'15. Unfortunately, we show that any privacy-preserving collaborative deep learning is susceptible to a powerful attack that we devise in this paper. In particular, we show that a distributed, federated, or decentralized deep learning approach is fundamentally broken and does not protect the training sets of honest participants. The attack we developed exploits the real-time nature of the learning process that allows the adversary to train a Generative Adversarial Network (GAN) that generates prototypical samples of the targeted training set that was meant to be private (the samples generated by the GAN are intended to come from the same distribution as the training data). Interestingly, we show that record-level DP applied to the shared parameters of the model, as suggested in previous work, is ineffective (i.e., record-level DP is not designed to address our attack).Comment: ACM CCS'17, 16 pages, 18 figure
    • …
    corecore