1,436 research outputs found

    Machine Tool Communication (MTComm) Method and Its Applications in a Cyber-Physical Manufacturing Cloud

    Get PDF
    The integration of cyber-physical systems and cloud manufacturing has the potential to revolutionize existing manufacturing systems by enabling better accessibility, agility, and efficiency. To achieve this, it is necessary to establish a communication method of manufacturing services over the Internet to access and manage physical machines from cloud applications. Most of the existing industrial automation protocols utilize Ethernet based Local Area Network (LAN) and are not designed specifically for Internet enabled data transmission. Recently MTConnect has been gaining popularity as a standard for monitoring status of machine tools through RESTful web services and an XML based messaging structure, but it is only designed for data collection and interpretation and lacks remote operation capability. This dissertation presents the design, development, optimization, and applications of a service-oriented Internet-scale communication method named Machine Tool Communication (MTComm) for exchanging manufacturing services in a Cyber-Physical Manufacturing Cloud (CPMC) to enable manufacturing with heterogeneous physically connected machine tools from geographically distributed locations over the Internet. MTComm uses an agent-adapter based architecture and a semantic ontology to provide both remote monitoring and operation capabilities through RESTful services and XML messages. MTComm was successfully used to develop and implement multi-purpose applications in in a CPMC including remote and collaborative manufacturing, active testing-based and edge-based fault diagnosis and maintenance of machine tools, cross-domain interoperability between Internet-of-things (IoT) devices and supply chain robots etc. To improve MTComm’s overall performance, efficiency, and acceptability in cyber manufacturing, the concept of MTComm’s edge-based middleware was introduced and three optimization strategies for data catching, transmission, and operation execution were developed and adopted at the edge. Finally, a hardware prototype of the middleware was implemented on a System-On-Chip based FPGA device to reduce computational and transmission latency. At every stage of its development, MTComm’s performance and feasibility were evaluated with experiments in a CPMC testbed with three different types of manufacturing machine tools. Experimental results demonstrated MTComm’s excellent feasibility for scalable cyber-physical manufacturing and superior performance over other existing approaches

    Machine Tool Communication (MTComm) Method and Its Applications in a Cyber-Physical Manufacturing Cloud

    Get PDF
    The integration of cyber-physical systems and cloud manufacturing has the potential to revolutionize existing manufacturing systems by enabling better accessibility, agility, and efficiency. To achieve this, it is necessary to establish a communication method of manufacturing services over the Internet to access and manage physical machines from cloud applications. Most of the existing industrial automation protocols utilize Ethernet based Local Area Network (LAN) and are not designed specifically for Internet enabled data transmission. Recently MTConnect has been gaining popularity as a standard for monitoring status of machine tools through RESTful web services and an XML based messaging structure, but it is only designed for data collection and interpretation and lacks remote operation capability. This dissertation presents the design, development, optimization, and applications of a service-oriented Internet-scale communication method named Machine Tool Communication (MTComm) for exchanging manufacturing services in a Cyber-Physical Manufacturing Cloud (CPMC) to enable manufacturing with heterogeneous physically connected machine tools from geographically distributed locations over the Internet. MTComm uses an agent-adapter based architecture and a semantic ontology to provide both remote monitoring and operation capabilities through RESTful services and XML messages. MTComm was successfully used to develop and implement multi-purpose applications in in a CPMC including remote and collaborative manufacturing, active testing-based and edge-based fault diagnosis and maintenance of machine tools, cross-domain interoperability between Internet-of-things (IoT) devices and supply chain robots etc. To improve MTComm’s overall performance, efficiency, and acceptability in cyber manufacturing, the concept of MTComm’s edge-based middleware was introduced and three optimization strategies for data catching, transmission, and operation execution were developed and adopted at the edge. Finally, a hardware prototype of the middleware was implemented on a System-On-Chip based FPGA device to reduce computational and transmission latency. At every stage of its development, MTComm’s performance and feasibility were evaluated with experiments in a CPMC testbed with three different types of manufacturing machine tools. Experimental results demonstrated MTComm’s excellent feasibility for scalable cyber-physical manufacturing and superior performance over other existing approaches

    A Framework for Industry 4.0

    Get PDF
    The potential of the Industry 4.0 will allow the national industry to develop all kinds of procedures, especially in terms of competitive differentiation. The prospects and motivations behind Industry 4.0 are related to the management that is essentially geared towards industrial internet, to the integrated analysis and use of data, to the digitalization of products and services, to new disruptive business models and to the cooperation within the value chain. It is through the integration of Cyber-Physical Systems (CPS), into the maintenance process that it is possible to carry out a continuous monitoring of industrial machines, as well as to apply advanced techniques for predictive and proactive maintenance. The present work is based on the MANTIS project, aiming to construct a specific platform for the proactive maintenance of industrial machines, targeting particularly the case of GreenBender ADIRA Steel Sheet. In other words, the aim is to reduce maintenance costs, increase the efficiency of the process and consequently the profit. Essentially, the MANTIS project is a multinational research project, where the CISTER Research Unit plays a key role, particularly in providing the communications infrastructure for one MANTIS Pilot. The methodology is based on a follow-up study, which is jointly carried with the client, as well as within the scope of the implementation of the ADIRA Pilot. The macro phases that are followed in the present work are: 1) detailed analysis of the business needs; 2) preparation of the architecture specification; 3) implementation/development; 4) tests and validation; 5) support; 6) stabilization; 7) corrective and evolutionary maintenance; and 8) final project analysis and corrective measures to be applied in future projects. The expected results of the development of such project are related to the integration of the industrial maintenance process, to the continuous monitoring of the machines and to the application of advanced techniques of preventive and proactive maintenance of industrial machines, particularly based on techniques and good practices of the Software Engineering area and on the integration of Cyber-Physical Systems.O potencial desenvolvido pela Indústria 4.0 dotará a indústria nacional de capacidades para desenvolver todo o tipo de procedimentos, especialmente a nível da diferenciação competitiva. As perspetivas e as motivações por detrás da Indústria 4.0 estão relacionadas com uma gestão essencialmente direcionada para a internet industrial, com uma análise integrada e utilização de dados, com a digitalização de produtos e de serviços, com novos modelos disruptivos de negócio e com uma cooperação horizontal no âmbito da cadeia de valor. É através da integração dos sistemas ciber-físicos no processo de manutenção que é possível proceder a um monitoramento contínuo das máquinas, tal como à aplicação de técnicas avançadas para a manutenção preditiva e pró-ativa das mesmas. O presente trabalho é baseado no projeto MANTIS, objetivando, portanto, a construção de uma plataforma específica para a manutenção pró-ativa das máquinas industriais, neste caso em concreto das prensas, que serão as máquinas industriais analisadas ao longo do presente trabalho. Dito de um outro modo, objetiva-se, através de uma plataforma em específico, reduzir todos os custos da sua manutenção, aumentando, portanto, os lucros industriais advindos da produção. Resumidamente, o projeto MANTIS consiste num projeto de investigação multinacional, onde a Unidade de Investigação CISTER desenvolve um papel fundamental, particularmente no fornecimento da infraestrutura de comunicação no Piloto MANTIS. A metodologia adotada é baseada num estudo de acompanhamento, realizado em conjunto com o cliente, e no âmbito da implementação do Piloto da ADIRA. As macro fases que são compreendidas por esta metodologia, e as quais serão seguidas, são: 1) análise detalhada das necessidades de negócio; 2) preparação da especificação da arquitetura; 3) implementação/desenvolvimento; 4) testes e validação; 5) suporte; 6) estabilização; 7) manutenção corretiva e evolutiva; e 8) análise final do projeto e medidas corretivas a aplicar em projetos futuros. Os resultados esperados com o desenvolvimento do projeto estão relacionados com a integração do processo de manutenção industrial, a monitorização contínua das máquinas e a aplicação de técnicas avançadas de manutenção preventiva e pós-ativa das máquinas, especialmente com base em técnicas e boas práticas da área de Engenharia de Software

    A Field Programmable Gate Array-Based Reconfigurable Smart-Sensor Network for Wireless Monitoring of New Generation Computer Numerically Controlled Machines

    Get PDF
    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node

    IIoT Machine Health Monitoring Models for Education and Training

    Get PDF
    IoT, IIoT and Industry 4.0 technologies are leading the way for digital transformation in manufacturing, healthcare, transportation, energy, retail, cities, supply chain, agriculture, buildings, and other sectors. Machine health monitoring and predictive maintenance of rotating machines is an innovative IIoT use case in the manufacturing and energy sectors. This chapter covers how machine health monitoring can be implemented using advanced sensor technology as a basis for predictive maintenance in rotating devices. It also covers how sensor data can be collected from the devices at the edge, preprocessed in a microcontroller/edge node, and sent to the cloud or local server for advanced data intelligence. In addition, this chapter describes the design and operation of three innovative models for education and training supporting the accelerated adoption of these technologies in industry sectors

    3D-based Advanced Machine Service Support

    Get PDF
    In the face of today's unpredictable and fluctuating global market, there have been trends in industry towards wider adoption of more advanced and flexible new generation manufacturing systems. These have brought about new challenges to manufacturing equipment builders/suppliers in respect of satisfying ever-increasing customers' requirements for such advanced manufacturing systems. To stay competitive, in addition to supplying high quality equipment, machine builders/suppliers must also be capable of providing their customers with cost-effective, efficient and comprehensive service support, throughout the equipment's lifecycle. This research study has been motivated by the relatively unexplored potential of integrating 3D virtual technology with various machine service support tools/techniques to address the aforementioned challenges. The hypothesis formulated for this study is that a 3D-based virtual environment can be used as an integration platform to improve service support for new generation manufacturing systems. In order to ensure the rigour of the study, it has been initiated with a two-stage (iterative) literature review, consisting of: a preliminary review for the identification of practical problems/main issues related to the area of machine service support and in-depth reviews for the identification of research problems/questions and potential solutions. These were then followed by iterations of intensive research activities, consisting of: requirements identification, concept development, prototype implementation, testing and exploration, reflection and feedback. The process has been repeated and revised continuously until satisfactory results, required for answering the identified research problems/questions, were obtained. The main focus of this study is exploring how a 3D-based virtual environment can be used as an integration platform for supporting a more cost-effective and comprehensive strategy for improving service support for new generation manufacturing systems. One of the main outcomes of this study is the proposal of a conceptual framework for a novel 3D-based advanced machine service support strategy and a reference architecture for a corresponding service support system, for allowing machine builders/suppliers to: (1) provide more cost-effective remote machine maintenance support, and (2) provide more efficient and comprehensive extended service support during the equipment's life cycle. The proposed service support strategy advocates the tight integration of conventional (consisting of mainly machine monitoring, diagnostics, prognostics and maintenance action decision support) and extended (consisting of mainly machine re-configuration, upgrade and expansion support) service support functions. The proposed service support system is based on the integration of a 3D-based virtual environment with the equipment control system, a re-configurable automated service support system, coupled with a maintenance-support-tool/strategy support environment and an equipment re-configuration/upgrade/expansion support environment, in a network/lntenet framework. The basic concepts, potential benefits and limitations of the proposed strategy/ system have been explored via a prototype based on a laboratory-scale test bed. The prototype consists of a set of integrated modular network-ready software tools consisting of: (1) an integrated 20/30 visualisation and analysis module, (2) support tools library modules, (3) communication modules and (4) a set of modular and re-configurable automated data logging, maintenance and re-configuration support modules. A number of test cases based on various machine service support scenarios, have been conducted using the prototype. The experimentation has shown the potential and feasibility (technical implementation aspects) of the proposed 3D-based approach. This research study has made an original contribution to knowledge in the field of machine service support. It has contributed a novel approach of using a 3D-based virtual environment as an integration platform for improving the capability of machine builders/suppliers in providing more cost-effective and comprehensive machine service support for complex new generation manufacturing systems. Several important findings have resulted from this work in particular with respect to how various 20/30 visualisation environments are integrated with machine service support tools/techniques for improving service support for complex manufacturing systems. A number of aspects have also been identified for future work

    Laser marking in CNC mills.

    Get PDF
    Every year the WPI Manufacturing Laboratories manufactures medallions for Alumni weekend. The current system requires many valuable man hours to function. Creating an automated system to laser mark the medallions would improve the current medallion production system. The goal of this MQP is to use Axiomatic Design to design a mechanical system that would enable automated laser marking to be done safely inside the CNC Machine tool that finishes the medallions. Several candidate designs were evaluated based on their information content and uncertainty. Using a single slide and a galvo laser significantly reduced the information content of the system. This system will be adequate for marking and engraving. Thus it is potential starting point for integrating other manufacturing process

    Monitoring of Tool and Component Wear for Self-Adaptive Digital Twins: A Multi-Stage Approach through Anomaly Detection and Wear Cycle Analysis

    Get PDF
    In today’s manufacturing landscape, Digital Twins play a pivotal role in optimising processes and deriving actionable insights that extend beyond on-site calculations. These dynamic representations of systems demand real-time data on the actual state of machinery, rather than static images depicting idealized configurations. This paper presents a novel approach for monitoring tool and component wear in CNC milling machines by segmenting and classifying individual machining cycles. The method assumes recurring sequences, even with a batch size of 1, and considers a progressive increase in tool wear between cycles. The algorithms effectively segment and classify cycles based on path length, spindle speed and cycle duration. The tool condition index for each cycle is determined by considering all axis signals, with upper and lower thresholds established for quantifying tool conditions. The same approach is adapted to predict component wear progression in machine tools, ensuring robust condition determination. A percentage-based component state description is achieved by comparing it to the corresponding Tool Condition Codes (TCC) range. This method provides a four-class estimation of the component state. The approach has demonstrated robustness in various validation cases

    Modularity and Architecture of PLC-based Software for Automated Production Systems: An analysis in industrial companies

    Full text link
    Adaptive and flexible production systems require modular and reusable software especially considering their long term life cycle of up to 50 years. SWMAT4aPS, an approach to measure Software Maturity for automated Production Systems is introduced. The approach identifies weaknesses and strengths of various companie's solutions for modularity of software in the design of automated Production Systems (aPS). At first, a self assessed questionnaire is used to evaluate a large number of companies concerning their software maturity. Secondly, we analyze PLC code, architectural levels, workflows and abilities to configure code automatically out of engineering information in four selected companies. In this paper, the questionnaire results from 16 German world leading companies in machine and plant manufacturing and four case studies validating the results from the detailed analyses are introduced to prove the applicability of the approach and give a survey of the state of the art in industry
    • …
    corecore