2,771 research outputs found

    An Open Source Digital Twin Framework

    Get PDF
    In this thesis, the utility and ideal composition of high-level programming frameworks to facilitate digital twin experiments were studied. Digital twins are a specific class of simulation artefacts that exist in the cyber domain parallel to their physical counterparts, reflecting their lives in a particularly detailed manner. As such, digital twins are conceived as one of the key enabling technologies in the context of intelligent life cycle management of industrial equipment. Hence, open source solutions with which digital twins can be built, executed and evaluated will likely see an increase in demand in the coming years. A theoretical framework for the digital twin is first established by reviewing the concepts of simulation, co-simulation and tool integration. Based on the findings, the digital twin is formulated as a specific co-simulation class consisting of software agents that interact with one of two possible types of external actors, i.e., sensory measurement streams originating from physical assets or simulation models that make use of the mentioned streams as inputs. The empirical part of the thesis consists of describing ModelConductor, an original Python library that supports the development of digital twin co-simulation experiments in presence of online input data. Along with describing the main features, a selection of illustrative use cases are presented. From a software engineering point of view, a high-level programmatic syntax is demonstrated through the examples that facilitates rapid prototyping and experimentation with various types of digital twin setups. As a major contribution of the thesis, object-oriented software engineering approach has been demonstrated to be a plausible means to construct and execute digital twins. Such an approach could potentially have consequences on digital twin related tasks being increasingly performed by software engineers in addition to domain experts in various engineering disciplines. In particular, the development of intelligent life cycle services such as predictive maintenance, for example, could benefit from workflow harmonization between the communities of digital twins and artificial intelligence, wherein high-level open source solutions are today used almost exclusively

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Air Force Institute of Technology Research Report 2017

    Get PDF
    This Research Report presents the FY18 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs)

    Academic Year 2019-2020 Faculty Excellence Showcase, AFIT Graduate School of Engineering & Management

    Get PDF
    An excerpt from the Dean\u27s Message: There is no place like the Air Force Institute of Technology (AFIT). There is no academic group like AFIT’s Graduate School of Engineering and Management. Although we run an educational institution similar to many other institutions of higher learning, we are different and unique because of our defense-focused graduate-research-based academic programs. Our programs are designed to be relevant and responsive to national defense needs. Our programs are aligned with the prevailing priorities of the US Air Force and the US Department of Defense. Our faculty team has the requisite critical mass of service-tested faculty members. The unique composition of pure civilian faculty, military faculty, and service-retired civilian faculty makes AFIT truly unique, unlike any other academic institution anywhere

    A methodology for the efficient integration of transient constraints in the design of aircraft dynamic systems

    Get PDF
    Transient regimes experienced by dynamic systems may have severe impacts on the operation of the aircraft. They are often regulated by dynamic constraints, requiring the dynamic signals to remain within bounds whose values vary with time. The verification of these peculiar types of constraints, which generally requires high-fidelity time-domain simulation, intervenes late in the system development process, thus potentially causing costly design iterations. The research objective of this thesis is to develop a methodology that integrates the verification of dynamic constraints in the early specification of dynamic systems. In order to circumvent the inefficiencies of time-domain simulation, multivariate dynamic surrogate models of the original time-domain simulation models are generated using wavelet neural networks (or wavenets). Concurrently, an alternate approach is formulated, in which the envelope of the dynamic response, extracted via a wavelet-based multiresolution analysis scheme, is subject to transient constraints. Dynamic surrogate models using sigmoid-based neural networks are generated to emulate the transient behavior of the envelope of the time-domain response. The run-time efficiency of the resulting dynamic surrogate models enables the implementation of a data farming approach, in which the full design space is sampled through a Monte-Carlo Simulation. An interactive visualization environment, enabling what-if analyses, is developed; the user can thereby instantaneously comprehend the transient response of the system (or its envelope) and its sensitivities to design and operation variables, as well as filter the design space to have it exhibit only the design scenarios verifying the dynamic constraints. The proposed methodology, along with its foundational hypotheses, is tested on the design and optimization of a 350VDC network, where a generator and its control system are concurrently designed in order to minimize the electrical losses, while ensuring that the transient undervoltage induced by peak demands in the consumption of a motor does not violate transient power quality constraints.Ph.D.Committee Chair: Mavris, Dimitri; Committee Member: Charrier, Jean-Jacques; Committee Member: Garcia, Elena; Committee Member: Grijalva, Santiago; Committee Member: Schrage, Danie
    corecore