10,018 research outputs found

    From Nonspecific DNA–Protein Encounter Complexes to the Prediction of DNA–Protein Interactions

    Get PDF
    ©2009 Gao, Skolnick. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.doi:10.1371/journal.pcbi.1000341DNA–protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA–protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA–protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA–protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA–protein interaction modes exhibit some similarity to specific DNA–protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Ca deviation from native is up to 5 Å from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA–protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein

    Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening

    Full text link
    This work introduces a number of algebraic topology approaches, such as multicomponent persistent homology, multi-level persistent homology and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. Multicomponent persistent homology retains critical chemical and biological information during the topological simplification of biomolecular geometric complexity. Multi-level persistent homology enables a tailored topological description of inter- and/or intra-molecular interactions of interest. Electrostatic persistence incorporates partial charge information into topological invariants. These topological methods are paired with Wasserstein distance to characterize similarities between molecules and are further integrated with a variety of machine learning algorithms, including k-nearest neighbors, ensemble of trees, and deep convolutional neural networks, to manifest their descriptive and predictive powers for chemical and biological problems. Extensive numerical experiments involving more than 4,000 protein-ligand complexes from the PDBBind database and near 100,000 ligands and decoys in the DUD database are performed to test respectively the scoring power and the virtual screening power of the proposed topological approaches. It is demonstrated that the present approaches outperform the modern machine learning based methods in protein-ligand binding affinity predictions and ligand-decoy discrimination

    Leveraging Machine Learning Models for Peptide-Protein Interaction Prediction

    Full text link
    Peptides play a pivotal role in a wide range of biological activities through participating in up to 40% protein-protein interactions in cellular processes. They also demonstrate remarkable specificity and efficacy, making them promising candidates for drug development. However, predicting peptide-protein complexes by traditional computational approaches, such as Docking and Molecular Dynamics simulations, still remains a challenge due to high computational cost, flexible nature of peptides, and limited structural information of peptide-protein complexes. In recent years, the surge of available biological data has given rise to the development of an increasing number of machine learning models for predicting peptide-protein interactions. These models offer efficient solutions to address the challenges associated with traditional computational approaches. Furthermore, they offer enhanced accuracy, robustness, and interpretability in their predictive outcomes. This review presents a comprehensive overview of machine learning and deep learning models that have emerged in recent years for the prediction of peptide-protein interactions.Comment: 46 pages, 10 figure

    The benefits of in silico modeling to identify possible small-molecule drugs and their off-target interactions

    Get PDF
    Accepted for publication in a future issue of Future Medicinal Chemistry.The research into the use of small molecules as drugs continues to be a key driver in the development of molecular databases, computer-aided drug design software and collaborative platforms. The evolution of computational approaches is driven by the essential criteria that a drug molecule has to fulfill, from the affinity to targets to minimal side effects while having adequate absorption, distribution, metabolism, and excretion (ADME) properties. A combination of ligand- and structure-based drug development approaches is already used to obtain consensus predictions of small molecule activities and their off-target interactions. Further integration of these methods into easy-to-use workflows informed by systems biology could realize the full potential of available data in the drug discovery and reduce the attrition of drug candidates.Peer reviewe

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF
    • …
    corecore