696 research outputs found

    Machine Learning Ranks ECG as an Optimal Wearable Biosignal for Assessing Driving Stress

    Get PDF
    The demand for wearable devices that can detect anxiety and stress when driving is increasing. Recent studies have attempted to use multiple biosignals to detect driving stress. However, collecting multiple biosignals can be complex and is associated with numerous challenges. Determining the optimal biosignal for assessing driving stress can save lives. To the best of our knowledge, no study has investigated both longitudinal and transitional stress assessment using supervised and unsupervised ML techniques. Thus, this study hypothesizes that the optimal signal for assessing driving stress will consistently detect stress using supervised and unsupervised machine learning (ML) techniques. Two different approaches were used to assess driving stress: longitudinal (a combined repeated measurement of the same biosignals over three driving states) and transitional (switching from state to state such as city to highway driving). The longitudinal analysis did not involve a feature extraction phase while the transitional analysis involved a feature extraction phase. The longitudinal analysis consists of a novel interaction ensemble (INTENSE) that aggregates three unsupervised ML approaches: interaction principal component analysis, connectivity-based clustering, and K-means clustering. INTENSE was developed to uncover new knowledge by revealing the strongest correlation between the biosignal and driving stress marker. These three MLs each have their well-known and distinctive geometrical basis. Thus, the aggregation of their result would provide a more robust examination of the simultaneous non-causal associations between six biosignals: electrocardiogram (ECG), electromyogram, hand galvanic skin resistance, foot galvanic skin resistance, heart rate, respiration, and the driving stress marker. INTENSE indicates that ECG is highly correlated with the driving stress marker. The supervised ML algorithms confirmed that ECG is the most informative biosignal for detecting driving stress, with an overall accuracy of 75.02%

    A systematic review of physiological signals based driver drowsiness detection systems.

    Get PDF
    Driving a vehicle is a complex, multidimensional, and potentially risky activity demanding full mobilization and utilization of physiological and cognitive abilities. Drowsiness, often caused by stress, fatigue, and illness declines cognitive capabilities that affect drivers' capability and cause many accidents. Drowsiness-related road accidents are associated with trauma, physical injuries, and fatalities, and often accompany economic loss. Drowsy-related crashes are most common in young people and night shift workers. Real-time and accurate driver drowsiness detection is necessary to bring down the drowsy driving accident rate. Many researchers endeavored for systems to detect drowsiness using different features related to vehicles, and drivers' behavior, as well as, physiological measures. Keeping in view the rising trend in the use of physiological measures, this study presents a comprehensive and systematic review of the recent techniques to detect driver drowsiness using physiological signals. Different sensors augmented with machine learning are utilized which subsequently yield better results. These techniques are analyzed with respect to several aspects such as data collection sensor, environment consideration like controlled or dynamic, experimental set up like real traffic or driving simulators, etc. Similarly, by investigating the type of sensors involved in experiments, this study discusses the advantages and disadvantages of existing studies and points out the research gaps. Perceptions and conceptions are made to provide future research directions for drowsiness detection techniques based on physiological signals. [Abstract copyright: © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

    A Feature Selection Method for Driver Stress Detection Using Heart Rate Variability and Breathing Rate

    Full text link
    Driver stress is a major cause of car accidents and death worldwide. Furthermore, persistent stress is a health problem, contributing to hypertension and other diseases of the cardiovascular system. Stress has a measurable impact on heart and breathing rates and stress levels can be inferred from such measurements. Galvanic skin response is a common test to measure the perspiration caused by both physiological and psychological stress, as well as extreme emotions. In this paper, galvanic skin response is used to estimate the ground truth stress levels. A feature selection technique based on the minimal redundancy-maximal relevance method is then applied to multiple heart rate variability and breathing rate metrics to identify a novel and optimal combination for use in detecting stress. The support vector machine algorithm with a radial basis function kernel was used along with these features to reliably predict stress. The proposed method has achieved a high level of accuracy on the target dataset.Comment: In Proceedings of the 15th International Conference on Machine Vision (ICMV), Rome, Italy, 18-20 November 2022. arXiv admin note: text overlap with arXiv:2206.0322

    Modern drowsiness detection techniques: a review

    Get PDF
    According to recent statistics, drowsiness, rather than alcohol, is now responsible for one-quarter of all automobile accidents. As a result, many monitoring systems have been created to reduce and prevent such accidents. However, despite the huge amount of state-of-the-art drowsiness detection systems, it is not clear which one is the most appropriate. The following points will be discussed in this paper: Initial consideration should be given to the many sorts of existing supervised detecting techniques that are now in use and grouped into four types of categories (behavioral, physiological, automobile and hybrid), Second, the supervised machine learning classifiers that are used for drowsiness detection will be described, followed by a discussion of the advantages and disadvantages of each technique that has been evaluated, and lastly the recommendation of a new strategy for detecting drowsiness

    A CNN-LSTM-based Deep Learning Approach for Driver Drowsiness Prediction

    Get PDF
    Abstract: The development of neural networks and machine learning techniques has recently been the cornerstone for many applications of artificial intelligence. These applications are now found in practically all aspects of our daily life. Predicting drowsiness is one of the most particularly valuable of artificial intelligence for reducing the rate of traffic accidents. According to earlier studies, drowsy driving is at responsible for 25 to 50% of all traffic accidents, which account for 1,200 deaths and 76,000 injuries annually. The goal of this research is to diminish car accidents caused by drowsy drivers. This research tests a number of popular deep learning-based models and presents a novel deep learning-based model for predicting driver drowsiness using a combination of convolutional neural networks (CNN) and Long-Short-Term Memory (LSTM) to achieve results that are superior to those of state-of-the-art methods. Utilizing convolutional layers, CNN has excellent feature extraction abilities, whereas LSTM can learn sequential dependencies. The National Tsing Hua University (NTHU) driver drowsiness dataset is used to test the model and compare it to several other current models as well as state-of-the-art models. The proposed model outperformed state-of-the-art models, with results up to 98.30% for training accuracy and 97.31% for validation accuracy

    A CNN-LSTM-based Deep Learning Approach for Driver Drowsiness Prediction

    Get PDF
    Abstract: The development of neural networks and machine learning techniques has recently been the cornerstone for many applications of artificial intelligence. These applications are now found in practically all aspects of our daily life. Predicting drowsiness is one of the most particularly valuable of artificial intelligence for reducing the rate of traffic accidents. According to earlier studies, drowsy driving is at responsible for 25 to 50% of all traffic accidents, which account for 1,200 deaths and 76,000 injuries annually. The goal of this research is to diminish car accidents caused by drowsy drivers. This research tests a number of popular deep learning-based models and presents a novel deep learning-based model for predicting driver drowsiness using a combination of convolutional neural networks (CNN) and Long-Short-Term Memory (LSTM) to achieve results that are superior to those of state-of-the-art methods. Utilizing convolutional layers, CNN has excellent feature extraction abilities, whereas LSTM can learn sequential dependencies. The National Tsing Hua University (NTHU) driver drowsiness dataset is used to test the model and compare it to several other current models as well as state-of-the-art models. The proposed model outperformed state-of-the-art models, with results up to 98.30% for training accuracy and 97.31% for validation accuracy

    Classification of Cognitive Load and Expertise for Adaptive Simulation using Deep Multitask Learning

    Full text link
    Simulations are a pedagogical means of enabling a risk-free way for healthcare practitioners to learn, maintain, or enhance their knowledge and skills. Such simulations should provide an optimum amount of cognitive load to the learner and be tailored to their levels of expertise. However, most current simulations are a one-type-fits-all tool used to train different learners regardless of their existing skills, expertise, and ability to handle cognitive load. To address this problem, we propose an end-to-end framework for a trauma simulation that actively classifies a participant's level of cognitive load and expertise for the development of a dynamically adaptive simulation. To facilitate this solution, trauma simulations were developed for the collection of electrocardiogram (ECG) signals of both novice and expert practitioners. A multitask deep neural network was developed to utilize this data and classify high and low cognitive load, as well as expert and novice participants. A leave-one-subject-out (LOSO) validation was used to evaluate the effectiveness of our model, achieving an accuracy of 89.4% and 96.6% for classification of cognitive load and expertise, respectively.Comment: 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work
    corecore