7,089 research outputs found

    PDF-Malware Detection: A Survey and Taxonomy of Current Techniques

    Get PDF
    Portable Document Format, more commonly known as PDF, has become, in the last 20 years, a standard for document exchange and dissemination due its portable nature and widespread adoption. The flexibility and power of this format are not only leveraged by benign users, but from hackers as well who have been working to exploit various types of vulnerabilities, overcome security restrictions, and then transform the PDF format in one among the leading malicious code spread vectors. Analyzing the content of malicious PDF files to extract the main features that characterize the malware identity and behavior, is a fundamental task for modern threat intelligence platforms that need to learn how to automatically identify new attacks. This paper surveys existing state of the art about systems for the detection of malicious PDF files and organizes them in a taxonomy that separately considers the used approaches and the data analyzed to detect the presence of malicious code. © Springer International Publishing AG, part of Springer Nature 2018

    Machine Learning DDoS Detection for Consumer Internet of Things Devices

    Full text link
    An increasing number of Internet of Things (IoT) devices are connecting to the Internet, yet many of these devices are fundamentally insecure, exposing the Internet to a variety of attacks. Botnets such as Mirai have used insecure consumer IoT devices to conduct distributed denial of service (DDoS) attacks on critical Internet infrastructure. This motivates the development of new techniques to automatically detect consumer IoT attack traffic. In this paper, we demonstrate that using IoT-specific network behaviors (e.g. limited number of endpoints and regular time intervals between packets) to inform feature selection can result in high accuracy DDoS detection in IoT network traffic with a variety of machine learning algorithms, including neural networks. These results indicate that home gateway routers or other network middleboxes could automatically detect local IoT device sources of DDoS attacks using low-cost machine learning algorithms and traffic data that is flow-based and protocol-agnostic.Comment: 7 pages, 3 figures, 3 tables, appears in the 2018 Workshop on Deep Learning and Security (DLS '18

    Android HIV: A Study of Repackaging Malware for Evading Machine-Learning Detection

    Full text link
    Machine learning based solutions have been successfully employed for automatic detection of malware in Android applications. However, machine learning models are known to lack robustness against inputs crafted by an adversary. So far, the adversarial examples can only deceive Android malware detectors that rely on syntactic features, and the perturbations can only be implemented by simply modifying Android manifest. While recent Android malware detectors rely more on semantic features from Dalvik bytecode rather than manifest, existing attacking/defending methods are no longer effective. In this paper, we introduce a new highly-effective attack that generates adversarial examples of Android malware and evades being detected by the current models. To this end, we propose a method of applying optimal perturbations onto Android APK using a substitute model. Based on the transferability concept, the perturbations that successfully deceive the substitute model are likely to deceive the original models as well. We develop an automated tool to generate the adversarial examples without human intervention to apply the attacks. In contrast to existing works, the adversarial examples crafted by our method can also deceive recent machine learning based detectors that rely on semantic features such as control-flow-graph. The perturbations can also be implemented directly onto APK's Dalvik bytecode rather than Android manifest to evade from recent detectors. We evaluated the proposed manipulation methods for adversarial examples by using the same datasets that Drebin and MaMadroid (5879 malware samples) used. Our results show that, the malware detection rates decreased from 96% to 1% in MaMaDroid, and from 97% to 1% in Drebin, with just a small distortion generated by our adversarial examples manipulation method.Comment: 15 pages, 11 figure

    An Evasion Attack against ML-based Phishing URL Detectors

    Full text link
    Background: Over the year, Machine Learning Phishing URL classification (MLPU) systems have gained tremendous popularity to detect phishing URLs proactively. Despite this vogue, the security vulnerabilities of MLPUs remain mostly unknown. Aim: To address this concern, we conduct a study to understand the test time security vulnerabilities of the state-of-the-art MLPU systems, aiming at providing guidelines for the future development of these systems. Method: In this paper, we propose an evasion attack framework against MLPU systems. To achieve this, we first develop an algorithm to generate adversarial phishing URLs. We then reproduce 41 MLPU systems and record their baseline performance. Finally, we simulate an evasion attack to evaluate these MLPU systems against our generated adversarial URLs. Results: In comparison to previous works, our attack is: (i) effective as it evades all the models with an average success rate of 66% and 85% for famous (such as Netflix, Google) and less popular phishing targets (e.g., Wish, JBHIFI, Officeworks) respectively; (ii) realistic as it requires only 23ms to produce a new adversarial URL variant that is available for registration with a median cost of only $11.99/year. We also found that popular online services such as Google SafeBrowsing and VirusTotal are unable to detect these URLs. (iii) We find that Adversarial training (successful defence against evasion attack) does not significantly improve the robustness of these systems as it decreases the success rate of our attack by only 6% on average for all the models. (iv) Further, we identify the security vulnerabilities of the considered MLPU systems. Our findings lead to promising directions for future research. Conclusion: Our study not only illustrate vulnerabilities in MLPU systems but also highlights implications for future study towards assessing and improving these systems.Comment: Draft for ACM TOP

    XSS-FP: Browser Fingerprinting using HTML Parser Quirks

    Get PDF
    There are many scenarios in which inferring the type of a client browser is desirable, for instance to fight against session stealing. This is known as browser fingerprinting. This paper presents and evaluates a novel fingerprinting technique to determine the exact nature (browser type and version, eg Firefox 15) of a web-browser, exploiting HTML parser quirks exercised through XSS. Our experiments show that the exact version of a web browser can be determined with 71% of accuracy, and that only 6 tests are sufficient to quickly determine the exact family a web browser belongs to
    • …
    corecore