469 research outputs found

    A Combined Numerical and Experimental Approach for Rolling Bearing Modelling and Prognostics

    Get PDF
    Rolling-element bearings are widely employed components which cover a major role in the NVH behaviour of the mechanical systems in which they are inserted. Therefore, it is crucial to thoroughly understand their fundamental properties and accurately quantify their most relevant parameters. Moreover, their inevitable failure due to contact fatigue leads to the necessity of correctly describing their dynamic behaviour. In fact, they permit to develop diagnostic and prognostic schemes, which are heavily requested in the nowadays industrial scenario due to their increasingly important role in the development of efficient maintenance strategies. As a result, throughout the years several techniques have been developed by researchers to address different challenges related to the modelling of these components. Within this context, this thesis aims at improving the available methods and at proposing novel approaches to tackle the modelling of rolling-element bearings both in case of static and dynamic simulations. In particular, the dissertation is divided in three major topics related to this field, i.e. the estimation of bearing radial stiffness trough the finite-element method, the lumped-parameter modelling of defective bearings and the development of physics-based prognostic models. The first part of the thesis deals with the finite-element simulations of rolling-element bearings. In particular, the investigation aims at providing an efficient procedure for the generation of load-dependent meshes. The method is developed with the primary objective of determining the radial stiffness of the examined components. In this regard, the main contribution to the subject is the definition of mesh element dimensions on the basis of analytical formulae and in the proposed methodology for the estimation of bearing stiffness. Then, the second part describes a multi-objective optimization technique for the estimation of unknown parameters in lumped parameter models of defective bearings. In fact, it was observed that several parameters which are commonly inserted in these models are hardly measurable or rather denoted by a high degree of uncertainty. On this basis, an optimization procedure aimed at minimizing the difference between experimental and numerical results is proposed. The novelty of the technique lies in the approach developed to tackle the problem and its peculiar implementation in the context of bearing lumped-parameter models. Lastly, the final part of the dissertation is devoted to the development of physics-based prognostic models. Specifically, two models are detailed, both based on a novel degradation-related parameter, i.e. the Equivalent Damaged Volume (EDV). An algorithm capable of extracting this quantity from experimental data is detailed. Then, EDV values are used as input parameters for two prognostic models. The first one aims at predicting the bearing vibration under different operative conditions with respect to a given reference deterioration history. On the other hand, the objective of the second model is to predict the time until a certain threshold on the equivalent damaged volume is crossed, regardless of the applied load and the shaft rotation speed. Therefore, the original aspect of this latter part is the development of prognostic models based on a novel indicator specifically introduced in this work. Results obtained from all proposed models are validated through analytical methods retrieved from the literature and by comparison with data acquired on a dedicated test bench. To this end, a test rig which was set-up at the Engineering Department of the University of Ferrara was employed to perform two type of tests, i.e. stationary tests on bearings with artificial defects and run-to-failure tests on initially healthy bearings. The characteristics of acceleration signals acquired during both tests are extensively discussed.I cuscinetti a rotolamento sono componenti meccanici che influenzano in maniera considerevole il comportamento dinamico dei sistemi all’interno dei quali sono montati. Pertanto, è di fondamentale importanza possedere strumenti atti alla stima dei loro parametri più rilevanti e avere a disposizione modelli dedicati allo studio delle loro caratteristiche dinamiche. Questo aspetto è di estrema importanza soprattutto nell’ottica dello sviluppo di schemi di diagnostica e prognostica, i quali sono sempre più richiesti all’interno dello scenario industriale odierno. In questo contesto, questa tesi si propone di migliorare le tecniche numeriche già esistenti e di fornire nuovi approcci per la modellazione dei cuscinetti a rotolamento sia nel caso di problemi statici che dinamici. Nello specifico, il lavoro tratta in maniera dettagliata tre diversi argomenti relativi a questo tema, ossia la stima della rigidezza radiale tramite il metodo agli elementi finiti, la modellazione a parametri concentrati di cuscinetti con difetti e lo sviluppo di modelli di prognostica physics-based. La prima parte della tesi concerne la simulazione di cuscinetti a rotolamento tramite il metodo ad elementi finiti. In particolare, lo studio si propone di fornire una procedura per la generazione di griglie le cui dimensioni dipendano dal carico applicato. Il metodo è sviluppato con l’obbiettivo di stimare in maniera computazionalmente efficace la rigidezza radiale del componente in esame. Pertanto, il contributo principale sul tema dato da questa prima parte riguarda il metodo analitico che permette di definire a priori le dimensioni degli elementi che costituiscono la mesh e la metodologia utilizzata per la stima della rigidezza. La seconda parte descrive una procedura di ottimizzazione multi obbiettivo per la stima dei parametri incogniti all’interno dei modelli a parametri concentrati di cuscinetti con difetti. Questa esigenza nasce dall’osservazione che numerosi parametri tipicamente inseriti in questa tipologia di modelli sono difficilmente misurabili oppure caratterizzati da un alto grado di incertezza. Perciò, nella seconda parte viene introdotta una tecnica innovativa che consente di stimare i parametri di modello che minimizzano la differenza fra risultati numerici e sperimentali in diverse condizioni di funzionamento. Infine, l’ultima parte è dedicata allo sviluppo di modelli di prognostica physics-based. A tal riguardo, vengono dettagliati due modelli basati su un nuovo indicatore di degrado del cuscinetto, denominato Equivalent Damaged Volume (EDV). Questo indicatore viene calcolato durante il funzionamento del cuscinetto tramite un algoritmo dedicato. I valori così ottenuti sono poi utilizzati come dati di input per i due modelli prognostici. Il primo mira a predire la vibrazione del cuscinetto in condizioni operative diverse rispetto ad una storia di degrado di riferimento. Diversamente, il secondo modello permette di prevedere il tempo rimanente prima del superamento di una soglia critica di volume equivalente danneggiato, indipendentemente da carico applicato e velocità di rotazione. Dunque, l’aspetto originale di quest’ultima parte ricade nello sviluppo di tecniche prognostiche basate su un nuovo indicatore introdotto ad-hoc in questo lavoro. I risultati ottenuti da tutti i modelli proposti sono validati grazie a metodi analitici di letteratura e a dati acquisiti in laboratorio per mezzo di un banco prova installato presso il Dipartimento di Ingegneria dell’Università di Ferrara. Il banco prova è stato utilizzato per realizzare due tipologie di prove, ossia test stazionari su cuscinetti che presentano difetti artificiali e prove di tipo run-to-failure su cuscinetti inizialmente sani. Le caratteristiche dei segnali di accelerazione acquisiti in entrambe le prove sono discussi in maniera esaustiva

    Cyber-Human Systems, Space Technologies, and Threats

    Get PDF
    CYBER-HUMAN SYSTEMS, SPACE TECHNOLOGIES, AND THREATS is our eighth textbook in a series covering the world of UASs / CUAS/ UUVs / SPACE. Other textbooks in our series are Space Systems Emerging Technologies and Operations; Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA’s Advanced Air Assets, 1st edition. Our previous seven titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols, et al., 2021) (Nichols R. K., et al., 2020) (Nichols R. , et al., 2020) (Nichols R. , et al., 2019) (Nichols R. K., 2018) (Nichols R. K., et al., 2022)https://newprairiepress.org/ebooks/1052/thumbnail.jp

    A Digital Triplet for Utilizing Offline Environments to Train Condition Monitoring Systems for Rolling Element Bearings

    Get PDF
    Manufacturing competitiveness is related to making a quality product while incurring the lowest costs. Unexpected downtime caused by equipment failure negatively impacts manufacturing competitiveness due to the ensuing defects and delays caused by the downtime. Manufacturers have adopted condition monitoring (CM) techniques to reduce unexpected downtime to augment maintenance strategies. The CM adoption has transitioned maintenance from Breakdown Maintenance (BM) to Condition-Based Maintenance (CbM) to anticipate impending failures and provide maintenance actions before equipment failure. CbM is the umbrella term for maintenance strategies that use condition monitoring techniques such as Preventive Maintenance (PM) and Predictive Maintenance (PdM). Preventive Maintenance involves providing periodic checks based on either time or sensory input. Predictive Maintenance utilizes continuous or periodic sensory inputs to determine the machine health state to predict the equipment failure. The overall goal of the work is to improve bearing diagnostic and prognostic predictions for equipment health by utilizing surrogate systems to generate failure data that represents production equipment failure, thereby providing training data for condition monitoring solutions without waiting for real world failure data. This research seeks to address the challenges of obtaining failure data for CM systems by incorporating a third system into monitoring strategies to create a Digital Triplet (DTr) for condition monitoring to increase the amount of possible data for condition monitoring. Bearings are a critical component in rotational manufacturing systems with wide application to other industries outside of manufacturing, such as energy and defense. The reinvented DTr system considers three components: the physical, surrogate, and digital systems. The physical system represents the real-world application in production that cannot fail. The surrogate system represents a physical component in a test system in an offline environment where data is generated to fill in gaps from data unavailable in the real-world system. The digital system is the CM system, which provides maintenance recommendations based on the ingested data from the real world and surrogate systems. In pursuing the research goal, a comprehensive bearing dataset detailing these four failure modes over different collection operating parameters was created. Subsequently, the collections occurred under different operating conditions, such as speed-varying, load-varying, and steadystate. Different frequency and time measures were used to analyze and identify differentiating criteria between the different failure classes over the differing operating conditions. These empirical observations were recreated using simulations to filter out potential outliers. The outputs of the physical model were combined with knowledge from the empirical observations to create ”spectral deltas” to augment existing bearing data and create new failure data that resemble similar frequency criteria to the original data. The primary verification occurred on a laboratory-bearing test stand. A conjecture is provided on how to scale to a larger system by analyzing a larger system from a local manufacturer. From the subsequent analysis of machine learning diagnosis and prognosis models, the original and augmented bearing data can complement each other during model training. The subsequent data substitution verifies that bearing data collected under different operating conditions and sizes can be substituted between different systems. Ostensibly, the full formulation of the digital triplet system is that bearing data generated at a smaller size can be scaled to train predictive failure models for larger bearing sizes. Future work should consider implementing this method for other systems outside of bearings, such as gears, non-rotational equipment, such as pumps, or even larger complex systems, such as computer numerically controlled machine tools or car engines. In addition, the method and process should not be restricted to only mechanical systems and could be applied to electrical systems, such as batteries. Furthermore, an investigation should consider further data-driven approximations to specific bearing characteristics related to the stiffness and damping parameters needed in modeling. A final consideration is for further investigation into the scalability quantities within the data and how to track these changes through different system levels

    On Novel Machine Learning Approaches for Acoustic Emission Source Localisation: A Probabilistic Perspective

    Get PDF
    With the objective of making engineering infrastructure safer and more cost-effective to operate and maintain, the use of automated strategies for monitoring damage in structures and high value assets are becoming increasingly common. A critical component in the assessment of a structure’s condition is the localisation of defects, with a promising solution the monitoring of acoustic emissions, a technique concerned with passively listening to ultrasonic signals generated by damage mechanisms. With that said, a significant barrier to a more widespread adoption of techniques of this nature are their use in structures with intricate geometrical features and anisotropic materials. In these structures, propagation paths are complex, material parameters often unknown, with stochasticity and a deficiency in complete physical understanding introducing sources of uncertainty that are often unaccounted for. The work contained in this thesis develops and extends a probabilistic framework for localising acoustic emissions in complex structures, handling uncertainty in a principled manner through Bayesian inference. A forward mapping of expected arrival time information is first learnt through the use of Gaussian process regression. For an event with an unknown origin, it is shown that these maps can be used to quantify a likelihood of emission location, providing probable damage locations on the structure. Next, the use of a heteroscedastic noise model is presented, allowing predictions made by the localisation model to be locally-weighted such that sensors contribute to the prediction relative to the quality of coverage offered, returning a more accurate, confident and robust localisation methodology. On the topic of the practicality of implementing the proposed approach, the inclusion of physical insight is considered within a grey-box framework to constrain the Gaussian process to abide by known physical laws. It is demonstrated that the constraints improve performance where the availability of training data reduces, increasing the feasibility of implementing the developed methodology. Finally, localisation is extended to cases where the geometry is not most appropriately characterised in Euclidean space, such as for roller-element and many other types of bearings. It is demonstrated how localisation may also be performed in a condition monitoring setting, as well as demonstrating the ability of the method to handle measurements that are contaminated with significant noise levels

    2021-2022, University of Memphis bulletin

    Get PDF
    University of Memphis bulletin containing the graduate catalog for 2021-2022.https://digitalcommons.memphis.edu/speccoll-ua-pub-bulletins/1441/thumbnail.jp
    • …
    corecore