2,836 research outputs found

    Pain Level Detection From Facial Image Captured by Smartphone

    Get PDF
    Accurate symptom of cancer patient in regular basis is highly concern to the medical service provider for clinical decision making such as adjustment of medication. Since patients have limitations to provide self-reported symptoms, we have investigated how mobile phone application can play the vital role to help the patients in this case. We have used facial images captured by smart phone to detect pain level accurately. In this pain detection process, existing algorithms and infrastructure are used for cancer patients to make cost low and user-friendly. The pain management solution is the first mobile-based study as far as we found today. The proposed algorithm has been used to classify faces, which is represented as a weighted combination of Eigenfaces. Here, angular distance, and support vector machines (SVMs) are used for the classification system. In this study, longitudinal data was collected for six months in Bangladesh. Again, cross-sectional pain images were collected from three different countries: Bangladesh, Nepal and the United States. In this study, we found that personalized model for pain assessment performs better for automatic pain assessment. We also got that the training set should contain varying levels of pain in each group: low, medium and high

    Neonatal pain detection in videos using the iCOPEvid dataset and an ensemble of descriptors extracted from Gaussian of Local Descriptors

    Get PDF
    Diagnosing pain in neonates is difficult but critical. Although approximately thirty manual pain instruments have been developed for neonatal pain diagnosis, most are complex, multifactorial, and geared toward research. The goals of this work are twofold: 1) to develop a new video dataset for automatic neonatal pain detection called iCOPEvid (infant Classification Of Pain Expressions videos), and 2) to present a classification system that sets a challenging comparison performance on this dataset. The iCOPEvid dataset contains 234 videos of 49 neonates experiencing a set of noxious stimuli, a period of rest, and an acute pain stimulus. From these videos 20 s segments are extracted and grouped into two classes: pain (49) and nopain (185), with the nopain video segments handpicked to produce a highly challenging dataset. An ensemble of twelve global and local descriptors with a Bag-of-Features approach is utilized to improve the performance of some new descriptors based on Gaussian of Local Descriptors (GOLD). The basic classifier used in the ensembles is the Support Vector Machine, and decisions are combined by sum rule. These results are compared with standard methods, some deep learning approaches, and 185 human assessments. Our best machine learning methods are shown to outperform the human judges

    Neonatal pain detection in videos using the iCOPEvid dataset and an ensemble of descriptors extracted from Gaussian of Local Descriptors

    Get PDF
    Abstract Diagnosing pain in neonates is difficult but critical. Although approximately thirty manual pain instruments have been developed for neonatal pain diagnosis, most are complex, multifactorial, and geared toward research. The goals of this work are twofold: 1) to develop a new video dataset for automatic neonatal pain detection called iCOPEvid (infant Classification Of Pain Expressions videos), and 2) to present a classification system that sets a challenging comparison performance on this dataset. The iCOPEvid dataset contains 234 videos of 49 neonates experiencing a set of noxious stimuli, a period of rest, and an acute pain stimulus. From these videos 20 s segments are extracted and grouped into two classes: pain (49) and nopain (185), with the nopain video segments handpicked to produce a highly challenging dataset. An ensemble of twelve global and local descriptors with a Bag-of-Features approach is utilized to improve the performance of some new descriptors based on Gaussian of Local Descriptors (GOLD). The basic classifier used in the ensembles is the Support Vector Machine, and decisions are combined by sum rule. These results are compared with standard methods, some deep learning approaches, and 185 human assessments. Our best machine learning methods are shown to outperform the human judges

    Facial feature representation and recognition

    Get PDF
    Facial expression provides an important behavioral measure for studies of emotion, cognitive processes, and social interaction. Facial expression representation and recognition have become a promising research area during recent years. Its applications include human-computer interfaces, human emotion analysis, and medical care and cure. In this dissertation, the fundamental techniques will be first reviewed, and the developments of the novel algorithms and theorems will be presented later. The objective of the proposed algorithm is to provide a reliable, fast, and integrated procedure to recognize either seven prototypical, emotion-specified expressions (e.g., happy, neutral, angry, disgust, fear, sad, and surprise in JAFFE database) or the action units in CohnKanade AU-coded facial expression image database. A new application area developed by the Infant COPE project is the recognition of neonatal facial expressions of pain (e.g., air puff, cry, friction, pain, and rest in Infant COPE database). It has been reported in medical literature that health care professionals have difficulty in distinguishing newborn\u27s facial expressions of pain from facial reactions of other stimuli. Since pain is a major indicator of medical problems and the quality of patient care depends on the quality of pain management, it is vital that the methods to be developed should accurately distinguish an infant\u27s signal of pain from a host of minor distress signal. The evaluation protocol used in the Infant COPE project considers two conditions: person-dependent and person-independent. The person-dependent means that some data of a subject are used for training and other data of the subject for testing. The person-independent means that the data of all subjects except one are used for training and this left-out one subject is used for testing. In this dissertation, both evaluation protocols are experimented. The Infant COPE research of neonatal pain classification is a first attempt at applying the state-of-the-art face recognition technologies to actual medical problems. The objective of Infant COPE project is to bypass these observational problems by developing a machine classification system to diagnose neonatal facial expressions of pain. Since assessment of pain by machine is based on pixel states, a machine classification system of pain will remain objective and will exploit the full spectrum of information available in a neonate\u27s facial expressions. Furthermore, it will be capable of monitoring neonate\u27s facial expressions when he/she is left unattended. Experimental results using the Infant COPE database and evaluation protocols indicate that the application of face classification techniques in pain assessment and management is a promising area of investigation. One of the challenging problems for building an automatic facial expression recognition system is how to automatically locate the principal facial parts since most existing algorithms capture the necessary face parts by cropping images manually. In this dissertation, two systems are developed to detect facial features, especially for eyes. The purpose is to develop a fast and reliable system to detect facial features automatically and correctly. By combining the proposed facial feature detection, the facial expression and neonatal pain recognition systems can be robust and efficient

    Objectively measuring pain using facial expression: is the technology finally ready?

    Get PDF
    Currently, clinicians observe pain-related behaviors and use patient self-report measures in order to determine pain severity. This paper reviews the evidence when facial expression is used as a measure of pain. We review the literature reporting the relevance of facial expression as a diagnostic measure, which facial movements are indicative of pain, and whether such movements can be reliably used to measure pain. We conclude that although the technology for objective pain measurement is not yet ready for use in clinical settings, the potential benefits to patients in improved pain management, combined with the advances being made in sensor technology and artificial intelligence, provide opportunities for research and innovation

    Application of Texture Descriptors to Facial Emotion Recognition in Infants

    Get PDF
    The recognition of facial emotions is an important issue in computer vision and artificial intelligence due to its important academic and commercial potential. If we focus on the health sector, the ability to detect and control patients’ emotions, mainly pain, is a fundamental objective within any medical service. Nowadays, the evaluation of pain in patients depends mainly on the continuous monitoring of the medical staff when the patient is unable to express verbally his/her experience of pain, as is the case of patients under sedation or babies. Therefore, it is necessary to provide alternative methods for its evaluation and detection. Facial expressions can be considered as a valid indicator of a person’s degree of pain. Consequently, this paper presents a monitoring system for babies that uses an automatic pain detection system by means of image analysis. This system could be accessed through wearable or mobile devices. To do this, this paper makes use of three different texture descriptors for pain detection: Local Binary Patterns, Local Ternary Patterns, and Radon Barcodes. These descriptors are used together with Support Vector Machines (SVM) for their classification. The experimental results show that the proposed features give a very promising classification accuracy of around 95% for the Infant COPE database, which proves the validity of the proposed method.This work has been partially supported by the Spanish Research Agency (AEI) and the European Regional Development Fund (FEDER) under project CloudDriver4Industry TIN2017-89266-R, and by the Conselleria de Educación, Investigación, Cultura y Deporte, of the Community of Valencia, Spain, within the program of support for research under project AICO/2017/134

    The clinical suitability of an artificial intelligence-enabled pain assessment tool for use in infants: Feasibility and usability evaluation study

    Get PDF
    Background: Infants are unable to self-report their pain, which, therefore, often goes underrecognized and undertreated. Adequate assessment of pain, including procedural pain, which has short- and long-term consequences, is critical for its management. The introduction of mobile health–based (mHealth) pain assessment tools could address current challenges and is an area requiring further research. Objective: The purpose of this study is to evaluate the accuracy and feasibility aspects of PainChek Infant and, therefore, assess its applicability in the intended setting. Methods: By observing infants just before, during, and after immunization, we evaluated the accuracy and precision at different cutoff scores of PainChek Infant, which is a point-of-care mHealth–based solution that uses artificial intelligence to detect pain and intensity based solely on facial expression. We used receiver operator characteristic analysis to assess interpretability and establish a cutoff score. Clinician comprehensibility was evaluated using a standardized questionnaire. Other feasibility aspects were evaluated based on comparison with currently available observational pain assessment tools for use in infants with procedural pain. Results: Both PainChek Infant Standard and Adaptive modes demonstrated high accuracy (area under the curve 0.964 and 0.966, respectively). At a cutoff score of ≥ 2, accuracy and precision were 0.908 and 0.912 for Standard and 0.912 and 0.897 for Adaptive modes, respectively. Currently available data allowed evaluation of 16 of the 17 feasibility aspects, with only the cost of the outcome measurement instrument unable to be evaluated since it is yet to be determined. PainChek Infant performed well across feasibility aspects, including interpretability (cutoff score defined), ease of administration, completion time (3 seconds), and clinician comprehensibility. Conclusions: This work provides information on the feasibility of using PainChek Infant in clinical practice for procedural pain assessment and monitoring, and demonstrates the accuracy and precision of the tool at the defined cutoff score

    Facial Expression Recognition

    Get PDF
    • …
    corecore