2 research outputs found

    Machine Vision System to Induct Binocular Wide-Angle Foveated Information into Both the Human and Computers - Feature Generation Algorithm based on DFT for Binocular Fixation

    Get PDF
    This paper introduces a machine vision system, which is suitable for cooperative works between the human and computer. This system provides images inputted from a stereo camera head not only to the processor but also to the user’s sight as binocular wide-angle foveated (WAF) information, thus it is applicable for Virtual Reality (VR) systems such as tele-existence or training experts. The stereo camera head plays a role to get required input images foveated by special wide-angle optics under camera view direction control and 3D head mount display (HMD) displays fused 3D images to the user. Moreover, an analog video signal processing device much inspired from a structure of the human visual system realizes a unique way to provide WAF information to plural processors and the user. Therefore, this developed vision system is also much expected to be applicable for the human brain and vision research, because the design concept is to mimic the human visual system. Further, an algorithm to generate features using Discrete Fourier Transform (DFT) for binocular fixation in order to provide well-fused 3D images to 3D HMD is proposed. This paper examines influences of applying this algorithm to space variant images such as WAF images, based on experimental results

    Image Extraction by Wide Angle Foveated Lens for Overt-Attention

    Get PDF
    This paper defines Wide Angle Foveated (WAF) imaging. A proposed model combines Cartesian coordinate system, a log-polar coordinate system, and a unique camera model composed of planar projection and spherical projection for all-purpose use of a single imaging device. The central field-of-view (FOV) and intermediate FOV are given translation-invariance and, rotation and scale-invariance for pattern recognition, respectively. Further, the peripheral FOV is more useful for camera’s view direction control, because its image height is linear to an incident angle to the camera model’s optical center point. Thus, this imaging model improves its usability especially when a camera is dynamically moved, that is, overt-attention. Moreover, simulation results of image extraction show advantages of the proposed model, in view of its magnification factor of the central FOV, accuracy of scale-invariance and flexibility to describe other WAF vision sensors
    corecore