190 research outputs found

    Machine Learning-aided Design of Thinned Antenna Arrays for Optimized Network Level Performance

    Full text link
    With the advent of millimeter wave (mmWave) communications, the combination of a detailed 5G network simulator with an accurate antenna radiation model is required to analyze the realistic performance of complex cellular scenarios. However, due to the complexity of both electromagnetic and network models, the design and optimization of antenna arrays is generally infeasible due to the required computational resources and simulation time. In this paper, we propose a Machine Learning framework that enables a simulation-based optimization of the antenna design. We show how learning methods are able to emulate a complex simulator with a modest dataset obtained from it, enabling a global numerical optimization over a vast multi-dimensional parameter space in a reasonable amount of time. Overall, our results show that the proposed methodology can be successfully applied to the optimization of thinned antenna arrays.Comment: 5 pages, 7 figures. This paper has been presented at EuCAP 2020. Copyright IEEE 2020. Please cite it as: M. Lecci, P. Testolina, M. Rebato, A. Testolin, and M. Zorzi, "Machine Learning-aided Design of Thinned Antenna Arrays for Optimized Network Level Performance," 14th European Conference on Antennas and Propagation (EuCAP 2020), Copenhagen, Mar. 202

    6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities

    Full text link
    Mobile communications have been undergoing a generational change every ten years or so. However, the time difference between the so-called "G's" is also decreasing. While fifth-generation (5G) systems are becoming a commercial reality, there is already significant interest in systems beyond 5G, which we refer to as the sixth-generation (6G) of wireless systems. In contrast to the already published papers on the topic, we take a top-down approach to 6G. We present a holistic discussion of 6G systems beginning with lifestyle and societal changes driving the need for next generation networks. This is followed by a discussion into the technical requirements needed to enable 6G applications, based on which we dissect key challenges, as well as possibilities for practically realizable system solutions across all layers of the Open Systems Interconnection stack. Since many of the 6G applications will need access to an order-of-magnitude more spectrum, utilization of frequencies between 100 GHz and 1 THz becomes of paramount importance. As such, the 6G eco-system will feature a diverse range of frequency bands, ranging from below 6 GHz up to 1 THz. We comprehensively characterize the limitations that must be overcome to realize working systems in these bands; and provide a unique perspective on the physical, as well as higher layer challenges relating to the design of next generation core networks, new modulation and coding methods, novel multiple access techniques, antenna arrays, wave propagation, radio-frequency transceiver design, as well as real-time signal processing. We rigorously discuss the fundamental changes required in the core networks of the future that serves as a major source of latency for time-sensitive applications. While evaluating the strengths and weaknesses of key 6G technologies, we differentiate what may be achievable over the next decade, relative to what is possible.Comment: Accepted for Publication into the Proceedings of the IEEE; 32 pages, 10 figures, 5 table

    Application of evolutionary computation techniques in emerging optimization problems in 5G and beyond wireless systems

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Elétrica, Florianópolis, 2021.Os sistemas comunicação sem fio 5G e além (B5G, do inglês Beyong 5G) permitirão a plena implantação de aplicações existentes, como carros autônomos, redes de sensores massivas e casas inteligentes. Para tornar essas aplicações possíveis, requisitos rigorosos, como alta eficiência espectral e ultra baixa latência de comunicação, devem ser atendidos. Para atender a esses requisitos, diferentes tecnologias-chave estão em desenvolvimento, como comunicações de Ondas Milimétricas (mmWave, do inglês Millimeter Wave) e Superfícies Refletivas Inteligentes (IRS, do inglês Intelligent Reflecting Surfaces). As comunicações mmWave têm atraído grande interesse devido ao abundante espectro de frequência disponível, ao contrário das bandas congestionadas adotadas nas redes 4G. No entanto, as bandas mmWave apresentam características de propagação desfavoráveis. Para superar tais problemas de propagação, o uso de beamforming altamente direcional é uma solução eficaz. Além disso, recentemente, uma tecnologia de baixo custo e alta eficiência energética denominada IRS, uma meta-superfície equipada com um grande número de elementos passivos de baixo custo, capaz de refletir o sinal incidente com uma dada mudança de fase/amplitude, foi desenvolvida para otimizar a capacidade da rede. Implantando densamente IRSs em redes de comunicação sem fio e coordenando seus elementos de maneira inteligente, os canais sem fio entre o transmissor e o receptor podem ser intencional e deterministicamente controlados para melhorar a qualidade do sinal no receptor. Embora essas tecnologias tenham inúmeros benefícios para o desempenho do sistema, elas apresentam muitos desafios em sua implantação. Mais especificamente, embora as bandas mmWave permitam considerar o uso de beamforming altamente direcional tanto na BS quanto no UE, isto pode representar um desafio para o processo de Acesso Inicial (IA, do inglês Initial Access) pois, uma vez que a transmissão omnidirecional não pode ser aplicada, devido ao seu baixo ganho de potência e SNR recebido, a duração geral do IA pode ser muito longa. O atraso causado pela busca direcional deve ser pequeno para atender a alguns dos requisitos das redes B5G como baixa latência de ponta-a-ponta. Além disso, apesar da capacidade das IRSs de controlar os canais sem fio, o projeto do beamforming na BS e na IRS é um problema desafiador devido à necessidade de estimar a informação de estado do canal (CSI, do inglês Channel State Information) de todos os links do sistema. No entanto, para estimar o CSI entre a IRS e a BS ou entre a IRS e o UE, cada elemento da IRS precisa ser equipado com uma cadeia de radiofrequência (RF, do inglês Radio Frequency), o que aumenta consideravelmente o custo e o consumo de energia do sistema e vai contra algumas das principais vantagens de utilizar IRSs em sistemas de comunicação sem fio. Portanto, motivados pelos problemas emergentes acima, nesta tese, pretendemos desenvolver novos métodos baseados em técnicas de Computação Evolutiva tais como, Algoritmos Genéticos (GA, do inglês Genetic Algorithm) e Otimização por Enxame de Partículas (PSO, do inglês Particle Swarm Optimization), visando resolver o problema de IA e realizar o projeto do beamforming na BS e IRS sem conhecimento prévio do CSI na BS. Os resultados obtidos nesta tese mostram que os métodos desenvolvidos podem reduzir consideravelmente o atraso e alcançar um desempenho próximo ao ótimo no problema de projeto do beamforming na BS e IRS com sobrecarga de treinamento reduzida.Abstract: Beyond 5G (B5G) wireless systems will enable the deployment of demanding applications such as autonomous cars, massive sensor networks, and smart homes. To make these applications possible, stringent requirements such as improved spectrum efficiency and low communication latency must be fulfilled. In order to meet these requirements, different key technologies are in development such as millimeter Wave (mmWave) communications and Intelligent Reflecting Surfaces (IRS). The mmWave communications have attracted great interest due to the abundant available spectrum, unlike the congested bands adopted in the 4G networks. However, the mmWave bands present poor propagation characteristics. To overcome these propagation issues, the use of highly directional beamforming is an effective solution. In addition, recently, an energy-efficient and low-cost technology named IRS, which is a meta-surface equipped with a large number of low-cost passive elements, capable of reflecting the incident signal with a given phase/amplitude shift, was developed to increase the network capacity. By densely deploying IRSs in wireless communication networks and intelligently coordinating their elements, the wireless channels between the transmitter and receiver can be intentionally and deterministically controlled to improve the signal quality at the receiver. Although these technologies have uncountable benefits for the system performance, they present many challenges in their deployment. More specifically, although the mmWave bands allow to consider highly directional beamforming at the BS and UE, this can be challenging for the Initial Access (IA) process. Since omnidirectional transmission may not be applied, due to its low power gain and received SNR, the overall duration of IA can be very long. The delay caused by directional search must be small to meet some of the B5G requirements for low end-to-end latency. Moreover, despite the capacity of controlling the wireless channels of the IRSs, designing the beamforming at the BS and at the IRS is a challenging problem due to the necessity of estimating the channel state information (CSI) of all system links. However, to estimate the CSI between IRS and BS or between IRS and UE, each element of the IRS needs to be equipped with one radio-frequency (RF) chain which greatly increases the cost and energy consumption of the system and goes against some of the original advantages of using an IRS. Therefore, motivated by the above emerging problems, in this thesis, we intend to develop new methods based on Evolutionary Computation techniques, i.e., Genetic Algorithms (GA) and Particle Swarm Optimization (PSO), to solve the IA problem and to design the beamforming at the BS and IRS without CSI. Results show that the developed methods can reduce the IA delay and achieve a close-to-optimal performance in the IRS beamforming problem with reduced training overhead

    Fine-grained performance analysis of massive MTC networks with scheduling and data aggregation

    Get PDF
    Abstract. The Internet of Things (IoT) represents a substantial shift within wireless communication and constitutes a relevant topic of social, economic, and overall technical impact. It refers to resource-constrained devices communicating without or with low human intervention. However, communication among machines imposes several challenges compared to traditional human type communication (HTC). Moreover, as the number of devices increases exponentially, different network management techniques and technologies are needed. Data aggregation is an efficient approach to handle the congestion introduced by a massive number of machine type devices (MTDs). The aggregators not only collect data but also implement scheduling mechanisms to cope with scarce network resources. This thesis provides an overview of the most common IoT applications and the network technologies to support them. We describe the most important challenges in machine type communication (MTC). We use a stochastic geometry (SG) tool known as the meta distribution (MD) of the signal-to-interference ratio (SIR), which is the distribution of the conditional SIR distribution given the wireless nodes’ locations, to provide a fine-grained description of the per-link reliability. Specifically, we analyze the performance of two scheduling methods for data aggregation of MTC: random resource scheduling (RRS) and channel-aware resource scheduling (CRS). The results show the fraction of users in the network that achieves a target reliability, which is an important aspect to consider when designing wireless systems with stringent service requirements. Finally, the impact on the fraction of MTDs that communicate with a target reliability when increasing the aggregators density is investigated

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Antenna Design for 5G and Beyond

    Get PDF
    With the rapid evolution of the wireless communications, fifth-generation (5G) communication has received much attention from both academia and industry, with many reported efforts and research outputs and significant improvements in different aspects, such as data rate speed and resolution, mobility, latency, etc. In some countries, the commercialization of 5G communication has already started as well as initial research of beyond technologies such as 6G.MIMO technology with multiple antennas is a promising technology to obtain the requirements of 5G/6G communications. It can significantly enhance the system capacity and resist multipath fading, and has become a hot spot in the field of wireless communications. This technology is a key component and probably the most established to truly reach the promised transfer data rates of future communication systems. In MIMO systems, multiple antennas are deployed at both the transmitter and receiver sides. The greater number of antennas can make the system more resistant to intentional jamming and interference. Massive MIMO with an especially high number of antennas can reduce energy consumption by targeting signals to individual users utilizing beamforming.Apart from sub-6 GHz frequency bands, 5G/6G devices are also expected to cover millimeter-wave (mmWave) and terahertz (THz) spectra. However, moving to higher bands will bring new challenges and will certainly require careful consideration of the antenna design for smart devices. Compact antennas arranged as conformal, planar, and linear arrays can be employed at different portions of base stations and user equipment to form phased arrays with high gain and directional radiation beams. The objective of this Special Issue is to cover all aspects of antenna designs used in existing or future wireless communication systems. The aim is to highlight recent advances, current trends, and possible future developments of 5G/6G antennas

    Advances in Evolutionary Algorithms

    Get PDF
    With the recent trends towards massive data sets and significant computational power, combined with evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field

    Performance Analysis and Learning Algorithms in Advanced Wireless Networks

    Get PDF
    Over the past decade, wireless data traffic has experienced an exponential growth, especially with multimedia traffic becoming the dominant traffic, and such growth is expected to continue in the near future. This unprecedented growth has led to an increasing demand for high-rate wireless communications.Key solutions for addressing such demand include extreme network densification with more small-cells, the utilization of high frequency bands, such as the millimeter wave (mmWave) bands and terahertz (THz) bands, where more bandwidth is available, and unmanned aerial vehicle (UAV)-enabled cellular networks. With this motivation, different types of advanced wireless networks are considered in this thesis. In particular, mmWave cellular networks, networks with hybrid THz, mmWave and microwave transmissions, and UAV-enabled networks are studied, and performance metrics such as the signal-to-interference-plus-noise ratio (SINR) coverage, energy coverage, and area spectral efficiency are analyzed. In addition, UAV path planning in cellular networks are investigated, and deep reinforcement learning (DRL) based algorithms are proposed to find collision-free UAV trajectory to accomplish different missions. In the first part of this thesis, mmWave cellular networks are considered. First, K-tier heterogeneous mmWave cellular networks with user-centric small-cell deployments are studied. Particularly, a heterogeneous network model with user equipments (UEs) being distributed according to Poisson cluster processes (PCPs) is considered. Distinguishing features of mmWave communications including directional beamforming and a detailed path loss model are taken into account. General expressions for the association probabilities of different tier base stations (BSs) are determined. Using tools from stochastic geometry, the Laplace transform of the interference is characterized and general expressions for the SINR coverage probability and area spectral efficiency are derived. Second, a distributed multi-agent learning-based algorithm for beamforming in mmWave multiple input multiple output (MIMO) networks is proposed to maximize the sum-rate of all UEs. Following the analysis of mmWave cellular networks, a three-tier heterogeneous network is considered, where access points (APs), small-cell BSs (SBSs) and macrocell BSs (MBSs) transmit in THz, mmWave, microwave frequency bands, respectively. By using tools from stochastic geometry, the complementary cumulative distribution function (CCDF) of the received signal power, the Laplace transform of the aggregate interference, and the SINR coverage probability are determined. Next, system-level performance of UAV-enabled cellular networks is studied. More specifically, in the first part, UAV-assisted mmWave cellular networks are addressed, in which the UE locations are modeled using PCPs. In the downlink phase, simultaneous wireless information and power transfer (SWIPT) technique is considered. The association probability, energy coverages and a successful transmission probability to jointly determine the energy and SINR coverages are derived. In the uplink phase, a scenario that each UAV receives information from its own cluster member UEs is taken into account. The Laplace transform of the interference components and the uplink SINR coverage are characterized. In the second part, cellular-connected UAV networks is investigated, in which the UAVs are aerial UEs served by the ground base stations (GBSs). 3D antenna radiation combing the vertical and horizontal patterns is taken into account. In the final part of this thesis, deep reinforcement learning based algorithms are proposed for UAV path planning in cellular networks. Particularly, in the first part, multi-UAV non-cooperative scenarios is considered, where multiple UAVs need to fly from initial locations to destinations, while satisfying collision avoidance, wireless connectivity and kinematic constraints. The goal is to find trajectories for the cellular-connected UAVs to minimize their mission completion time. The multi-UAV trajectory optimization problem is formulated as a sequential decision making problem, and a decentralized DRL approach is proposed to solve the problem. Moreover, multiple UAV trajectory design in cellular networks with a dynamic jammer is studied, and a learning-based algorithm is proposed. Subsequently, a UAV trajectory optimization problem is considered to maximize the collected data from multiple Internet of things (IoT) nodes under realistic constraints. The problem is translated into a Markov decision process (MDP) and dueling double deep Q-network (D3QN) is proposed to learn the decision making policy
    corecore