35,571 research outputs found

    Modeling Conceptual Characteristics of Virtual Machines for CPU Utilization Prediction

    Full text link
    Cloud services have grown rapidly in recent years, which provide high flexibility for cloud users to fulfill their computing requirements on demand. To wisely allocate computing resources in the cloud, it is inevitably important for cloud service providers to be aware of the potential utilization of various resources in the future. This paper focuses on predicting CPU utilization of virtual machines (VMs) in the cloud. We conduct empirical analysis on Microsoft Azure's VM workloads and identify important conceptual characteristics of CPU utilization among VMs, including locality, periodicity and tendency. We propose a neural network method, named Time-aware Residual Networks (T-ResNet), to model the observed conceptual characteristics with expanded network depth for CPU utilization prediction. We conduct extensive experiments to evaluate the effectiveness of our proposed method and the results show that T-ResNet consistently outperforms baseline approaches in various metrics including RMSE, MAE and MAPE

    Predictive Performance Modeling for Distributed Computing using Black-Box Monitoring and Machine Learning

    Full text link
    In many domains, the previous decade was characterized by increasing data volumes and growing complexity of computational workloads, creating new demands for highly data-parallel computing in distributed systems. Effective operation of these systems is challenging when facing uncertainties about the performance of jobs and tasks under varying resource configurations, e.g., for scheduling and resource allocation. We survey predictive performance modeling (PPM) approaches to estimate performance metrics such as execution duration, required memory or wait times of future jobs and tasks based on past performance observations. We focus on non-intrusive methods, i.e., methods that can be applied to any workload without modification, since the workload is usually a black-box from the perspective of the systems managing the computational infrastructure. We classify and compare sources of performance variation, predicted performance metrics, required training data, use cases, and the underlying prediction techniques. We conclude by identifying several open problems and pressing research needs in the field.Comment: 19 pages, 3 figures, 5 table

    Machine Learning for Vehicular Networks

    Full text link
    The emerging vehicular networks are expected to make everyday vehicular operation safer, greener, and more efficient, and pave the path to autonomous driving in the advent of the fifth generation (5G) cellular system. Machine learning, as a major branch of artificial intelligence, has been recently applied to wireless networks to provide a data-driven approach to solve traditionally challenging problems. In this article, we review recent advances in applying machine learning in vehicular networks and attempt to bring more attention to this emerging area. After a brief overview of the major concept of machine learning, we present some application examples of machine learning in solving problems arising in vehicular networks. We finally discuss and highlight several open issues that warrant further research.Comment: Accepted by IEEE Vehicular Technology Magazin

    ADARES: Adaptive Resource Management for Virtual Machines

    Full text link
    Virtual execution environments allow for consolidation of multiple applications onto the same physical server, thereby enabling more efficient use of server resources. However, users often statically configure the resources of virtual machines through guesswork, resulting in either insufficient resource allocations that hinder VM performance, or excessive allocations that waste precious data center resources. In this paper, we first characterize real-world resource allocation and utilization of VMs through the analysis of an extensive dataset, consisting of more than 250k VMs from over 3.6k private enterprise clusters. Our large-scale analysis confirms that VMs are often misconfigured, either overprovisioned or underprovisioned, and that this problem is pervasive across a wide range of private clusters. We then propose ADARES, an adaptive system that dynamically adjusts VM resources using machine learning techniques. In particular, ADARES leverages the contextual bandits framework to effectively manage the adaptations. Our system exploits easily collectible data, at the cluster, node, and VM levels, to make more sensible allocation decisions, and uses transfer learning to safely explore the configurations space and speed up training. Our empirical evaluation shows that ADARES can significantly improve system utilization without sacrificing performance. For instance, when compared to threshold and prediction-based baselines, it achieves more predictable VM-level performance and also reduces the amount of virtual CPUs and memory provisioned by up to 35% and 60% respectively for synthetic workloads on real clusters

    Modular Resource Centric Learning for Workflow Performance Prediction

    Full text link
    Workflows provide an expressive programming model for fine-grained control of large-scale applications in distributed computing environments. Accurate estimates of complex workflow execution metrics on large-scale machines have several key advantages. The performance of scheduling algorithms that rely on estimates of execution metrics degrades when the accuracy of predicted execution metrics decreases. This in-progress paper presents a technique being developed to improve the accuracy of predicted performance metrics of large-scale workflows on distributed platforms. The central idea of this work is to train resource-centric machine learning agents to capture complex relationships between a set of program instructions and their performance metrics when executed on a specific resource. This resource-centric view of a workflow exploits the fact that predicting execution times of sub-modules of a workflow requires monitoring and modeling of a few dynamic and static features. We transform the input workflow that is essentially a directed acyclic graph of actions into a Physical Resource Execution Plan (PREP). This transformation enables us to model an arbitrarily complex workflow as a set of simpler programs running on physical nodes. We delegate a machine learning model to capture performance metrics for each resource type when it executes different program instructions under varying degrees of resource contention. Our algorithm takes the prediction metrics from each resource agent and composes the overall workflow performance metrics by utilizing the structure of the corresponding Physical Resource Execution Plan.Comment: This paper was presented at: 6th Workshop on Big Data Analytics: Challenges, and Opportunities (BDAC) at the 27th IEEE/ACM International Conference for High Performance Computing, Networking, Storage, and Analysis (SC 2015

    Dynamic Selection of Virtual Machines for Application Servers in Cloud Environments

    Full text link
    Autoscaling is a hallmark of cloud computing as it allows flexible just-in-time allocation and release of computational resources in response to dynamic and often unpredictable workloads. This is especially important for web applications whose workload is time dependent and prone to flash crowds. Most of them follow the 3-tier architectural pattern, and are divided into presentation, application/domain and data layers. In this work we focus on the application layer. Reactive autoscaling policies of the type "Instantiate a new Virtual Machine (VM) when the average server CPU utilisation reaches X%" have been used successfully since the dawn of cloud computing. But which VM type is the most suitable for the specific application at the moment remains an open question. In this work, we propose an approach for dynamic VM type selection. It uses a combination of online machine learning techniques, works in real time and adapts to changes in the users' workload patterns, application changes as well as middleware upgrades and reconfigurations. We have developed a prototype, which we tested with the CloudStone benchmark deployed on AWS EC2. Results show that our method quickly adapts to workload changes and reduces the total cost compared to the industry standard approach

    Application of Machine Learning in Wireless Networks: Key Techniques and Open Issues

    Full text link
    As a key technique for enabling artificial intelligence, machine learning (ML) is capable of solving complex problems without explicit programming. Motivated by its successful applications to many practical tasks like image recognition, both industry and the research community have advocated the applications of ML in wireless communication. This paper comprehensively surveys the recent advances of the applications of ML in wireless communication, which are classified as: resource management in the MAC layer, networking and mobility management in the network layer, and localization in the application layer. The applications in resource management further include power control, spectrum management, backhaul management, cache management, beamformer design and computation resource management, while ML based networking focuses on the applications in clustering, base station switching control, user association and routing. Moreover, literatures in each aspect is organized according to the adopted ML techniques. In addition, several conditions for applying ML to wireless communication are identified to help readers decide whether to use ML and which kind of ML techniques to use, and traditional approaches are also summarized together with their performance comparison with ML based approaches, based on which the motivations of surveyed literatures to adopt ML are clarified. Given the extensiveness of the research area, challenges and unresolved issues are presented to facilitate future studies, where ML based network slicing, infrastructure update to support ML based paradigms, open data sets and platforms for researchers, theoretical guidance for ML implementation and so on are discussed.Comment: 34 pages,8 figure

    Bioinformatics Computational Cluster Batch Task Profiling with Machine Learning for Failure Prediction

    Full text link
    Motivation: Traditional computational cluster schedulers are based on user inputs and run time needs request for memory and CPU, not IO. Heavily IO bound task run times, like ones seen in many big data and bioinformatics problems, are dependent on the IO subsystems scheduling and are problematic for cluster resource scheduling. The problematic rescheduling of IO intensive and errant tasks is a lost resource. Understanding the conditions in both successful and failed tasks and differentiating them could provide knowledge to enhancing cluster scheduling and intelligent resource optimization. Results: We analyze a production computational cluster contributing 6.7 thousand CPU hours to research over two years. Through this analysis we develop a machine learning task profiling agent for clusters that attempts to predict failures between identically provision requested tasks

    Performance-Aware Management of Cloud Resources: A Taxonomy and Future Directions

    Full text link
    Dynamic nature of the cloud environment has made distributed resource management process a challenge for cloud service providers. The importance of maintaining the quality of service in accordance with customer expectations as well as the highly dynamic nature of cloud-hosted applications add new levels of complexity to the process. Advances to the big data learning approaches have shifted conventional static capacity planning solutions to complex performance-aware resource management methods. It is shown that the process of decision making for resource adjustment is closely related to the behaviour of the system including the utilization of resources and application components. Therefore, a continuous monitoring of system attributes and performance metrics provide the raw data for the analysis of problems affecting the performance of the application. Data analytic methods such as statistical and machine learning approaches offer the required concepts, models and tools to dig into the data, find general rules, patterns and characteristics that define the functionality of the system. Obtained knowledge form the data analysis process helps to find out about the changes in the workloads, faulty components or problems that can cause system performance to degrade. A timely reaction to performance degradations can avoid violations of the service level agreements by performing proper corrective actions including auto-scaling or other resource adjustment solutions. In this paper, we investigate the main requirements and limitations in cloud resource management including a study of the approaches in workload and anomaly analysis in the context of the performance management in the cloud. A taxonomy of the works on this problem is presented which identifies the main approaches in existing researches from data analysis side to resource adjustment techniques

    Applications of Deep Reinforcement Learning in Communications and Networking: A Survey

    Full text link
    This paper presents a comprehensive literature review on applications of deep reinforcement learning in communications and networking. Modern networks, e.g., Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) networks, become more decentralized and autonomous. In such networks, network entities need to make decisions locally to maximize the network performance under uncertainty of network environment. Reinforcement learning has been efficiently used to enable the network entities to obtain the optimal policy including, e.g., decisions or actions, given their states when the state and action spaces are small. However, in complex and large-scale networks, the state and action spaces are usually large, and the reinforcement learning may not be able to find the optimal policy in reasonable time. Therefore, deep reinforcement learning, a combination of reinforcement learning with deep learning, has been developed to overcome the shortcomings. In this survey, we first give a tutorial of deep reinforcement learning from fundamental concepts to advanced models. Then, we review deep reinforcement learning approaches proposed to address emerging issues in communications and networking. The issues include dynamic network access, data rate control, wireless caching, data offloading, network security, and connectivity preservation which are all important to next generation networks such as 5G and beyond. Furthermore, we present applications of deep reinforcement learning for traffic routing, resource sharing, and data collection. Finally, we highlight important challenges, open issues, and future research directions of applying deep reinforcement learning.Comment: 37 pages, 13 figures, 6 tables, 174 reference paper
    corecore