5 research outputs found

    Machine Learning for Microcontroller-Class Hardware -- A Review

    Full text link
    The advancements in machine learning opened a new opportunity to bring intelligence to the low-end Internet-of-Things nodes such as microcontrollers. Conventional machine learning deployment has high memory and compute footprint hindering their direct deployment on ultra resource-constrained microcontrollers. This paper highlights the unique requirements of enabling onboard machine learning for microcontroller class devices. Researchers use a specialized model development workflow for resource-limited applications to ensure the compute and latency budget is within the device limits while still maintaining the desired performance. We characterize a closed-loop widely applicable workflow of machine learning model development for microcontroller class devices and show that several classes of applications adopt a specific instance of it. We present both qualitative and numerical insights into different stages of model development by showcasing several use cases. Finally, we identify the open research challenges and unsolved questions demanding careful considerations moving forward.Comment: Accepted for publication at IEEE Sensors Journa

    Why is Machine Learning Security so hard?

    Get PDF
    The increase of available data and computing power has fueled a wide application of machine learning (ML). At the same time, security concerns are raised: ML models were shown to be easily fooled by slight perturbations on their inputs. Furthermore, by querying a model and analyzing output and input pairs, an attacker can infer the training data or replicate the model, thereby harming the owner’s intellectual property. Also, altering the training data can lure the model into producing specific or generally wrong outputs at test time. So far, none of the attacks studied in the field has been satisfactorily defended. In this work, we shed light on these difficulties. We first consider classifier evasion or adversarial examples. The computation of such examples is an inherent problem, as opposed to a bug that can be fixed. We also show that adversarial examples often transfer from one model to another, different model. Afterwards, we point out that the detection of backdoors (a training-time attack) is hindered as natural backdoor-like patterns occur even in benign neural networks. The question whether a pattern is benign or malicious then turns into a question of intention, which is hard to tackle. A different kind of complexity is added with the large libraries nowadays in use to implement machine learning. We introduce an attack that alters the library, thereby decreasing the accuracy a user can achieve. In case the user is aware of the attack, however, it is straightforward to defeat. This is not the case for most classical attacks described above. Additional difficulty is added if several attacks are studied at once: we show that even if the model is configured for one attack to be less effective, another attack might perform even better. We conclude by pointing out the necessity of understanding the ML model under attack. On the one hand, as we have seen throughout the examples given here, understanding precedes defenses and attacks. On the other hand, an attack, even a failed one, often yields new insights and knowledge about the algorithm studied.This work was supported by the German Federal Ministry of Education and Research (BMBF) through funding for the Center for IT-Security,Privacy and Accountability (CISPA) (FKZ: 16KIS0753

    Tracking the Temporal-Evolution of Supernova Bubbles in Numerical Simulations

    Get PDF
    The study of low-dimensional, noisy manifolds embedded in a higher dimensional space has been extremely useful in many applications, from the chemical analysis of multi-phase flows to simulations of galactic mergers. Building a probabilistic model of the manifolds has helped in describing their essential properties and how they vary in space. However, when the manifold is evolving through time, a joint spatio-temporal modelling is needed, in order to fully comprehend its nature. We propose a first-order Markovian process that propagates the spatial probabilistic model of a manifold at fixed time, to its adjacent temporal stages. The proposed methodology is demonstrated using a particle simulation of an interacting dwarf galaxy to describe the evolution of a cavity generated by a Supernov

    Machine Learning-Based Fast Banknote Serial Number Recognition Using Knowledge Distillation and Bayesian Optimization

    No full text
    We investigated a machine-learning-based fast banknote serial number recognition method. Unlike existing methods, the proposed method not only recognizes multi-digit serial numbers simultaneously but also detects the region of interest for the serial number automatically from the input image. Furthermore, the proposed method uses knowledge distillation to compress a cumbersome deep-learning model into a simple model to achieve faster computation. To automatically decide hyperparameters for knowledge distillation, we applied the Bayesian optimization method. In experiments using Japanese Yen, Korean Won, and Euro banknotes, the proposed method showed significant improvement in computation time while maintaining a performance comparable to a sequential region of interest (ROI) detection and classification method

    Tematski zbornik radova međunarodnog značaja. Tom 3 / Međunarodni naučni skup "Dani Arčibalda Rajsa", Beograd, 1-2. mart 2013

    Get PDF
    The Thematic Conference Proceedings contains 138 papers written by eminent scholars in the field of law, security, criminalistics, police studies, forensics, medicine, as well as members of national security system participating in education of the police, army and other security services from Russia, Ukraine, Belarus, China, Poland, Slovakia, Czech Republic, Hungary, Slovenia, Bosnia and Herzegovina, Montenegro, Republic of Srpska and Serbia. Each paper has been reviewed by two competent international reviewers, and the Thematic Conference Proceedings in whole has been reviewed by five international reviewers. The papers published in the Thematic Conference Proceedings contain the overview of con-temporary trends in the development of police educational system, development of the police and contemporary security, criminalistics and forensics, as well as with the analysis of the rule of law activities in crime suppression, situation and trends in the above-mentioned fields, and suggestions on how to systematically deal with these issues. The Thematic Conference Proceedings represents a significant contribution to the existing fund of scientific and expert knowledge in the field of criminalistic, security, penal and legal theory and practice. Publication of this Conference Proceedings contributes to improving of mutual cooperation between educational, scientific and expert institutions at national, regional and international level
    corecore