87,193 research outputs found

    Plant Information Modelling, Using Artificial Intelligence, for Process Hazard and Risk Analysis Study

    Get PDF
    In this research, the application of Artificial Intelligence and knowledge engineering, automation of equipment arrangement design, automation of piping and support design, using machine learning to automate the stress analysis, and finally, using information modelling to shift ‘field weld locating’ activity from the construction to the design phase were investigated. The results of integrating these methods on case studies, to increase the safety in the lifecycle of process plants were analysed and discussed

    Technology based learning system in Internet of Things (IoT) education

    Get PDF
    In this decade, Internet of Things (IoT) technologies are motivating nations for digital transformation. This transformation is part of Fourth industrial revolution (Industry 4.0). Several challenges are obstacle in the digitalization, one of them is talent in this field. There are not many available automation or control labs equipped with advance automation technologies in the educational institutions. To produce more force for IoT, engineering intuitions need to improve their curriculum and engineering lab facilities. In this paper, a technology-based learning system is proposed for learning IoT. The design of this system purposely developed for control lab for undergraduates and postgraduate students. This system offers a low-cost development using industrial standard controller, which is suitable for industrial and enterprise applications prototyping. Three modules are prepared to train the students; 1) Introduction to IoT & Industry 4.0, 2) controller programming, configuration and machine to machine (M2M) communication and 3) design and development of web and mobile applications. All students implemented and tested the industrial standard IoT application in the end of Session. The design and implementation result shows the learning experience of students has been improved and motivates the institutions to apply this low-cost system to fulfil the future talent demand in this field

    Improving software engineering processes using machine learning and data mining techniques

    Get PDF
    The availability of large amounts of data from software development has created an area of research called mining software repositories. Researchers mine data from software repositories both to improve understanding of software development and evolution, and to empirically validate novel ideas and techniques. The large amount of data collected from software processes can then be leveraged for machine learning applications. Indeed, machine learning can have a large impact in software engineering, just like it has had in other fields, supporting developers, and other actors involved in the software development process, in automating or improving parts of their work. The automation can not only make some phases of the development process less tedious or cheaper, but also more efficient and less prone to errors. Moreover, employing machine learning can reduce the complexity of difficult problems, enabling engineers to focus on more interesting problems rather than the basics of development. The aim of this dissertation is to show how the development and the use of machine learning and data mining techniques can support several software engineering phases, ranging from crash handling, to code review, to patch uplifting, to software ecosystem management. To validate our thesis we conducted several studies tackling different problems in an industrial open-source context, focusing on the case of Mozilla

    Data-Driven Application Maintenance: Views from the Trenches

    Full text link
    In this paper we present our experience during design, development, and pilot deployments of a data-driven machine learning based application maintenance solution. We implemented a proof of concept to address a spectrum of interrelated problems encountered in application maintenance projects including duplicate incident ticket identification, assignee recommendation, theme mining, and mapping of incidents to business processes. In the context of IT services, these problems are frequently encountered, yet there is a gap in bringing automation and optimization. Despite long-standing research around mining and analysis of software repositories, such research outputs are not adopted well in practice due to the constraints these solutions impose on the users. We discuss need for designing pragmatic solutions with low barriers to adoption and addressing right level of complexity of problems with respect to underlying business constraints and nature of data.Comment: Earlier version of paper appearing in proceedings of the 4th International Workshop on Software Engineering Research and Industrial Practice (SER&IP), IEEE Press, pp. 48-54, 201

    Active learning based laboratory towards engineering education 4.0

    Get PDF
    Universities have a relevant and essential key role to ensure knowledge and development of competencies in the current fourth industrial revolution called Industry 4.0. The Industry 4.0 promotes a set of digital technologies to allow the convergence between the information technology and the operation technology towards smarter factories. Under such new framework, multiple initiatives are being carried out worldwide as response of such evolution, particularly, from the engineering education point of view. In this regard, this paper introduces the initiative that is being carried out at the Technical University of Catalonia, Spain, called Industry 4.0 Technologies Laboratory, I4Tech Lab. The I4Tech laboratory represents a technological environment for the academic, research and industrial promotion of related technologies. First, in this work, some of the main aspects considered in the definition of the so called engineering education 4.0 are discussed. Next, the proposed laboratory architecture, objectives as well as considered technologies are explained. Finally, the basis of the proposed academic method supported by an active learning approach is presented.Postprint (published version
    corecore