26,443 research outputs found

    Context-aware support for cardiac health monitoring using federated machine learning

    Get PDF
    Context-awareness provides a platform for healthcare professionals to assess the health status of patients in their care using multiple relevant parameters such as heart rate, electrocardiogram (ECG) signals and activity data. It involves the use of digital technologies to monitor the health condition of a patient in an intelligent environment. Feedback gathered from relevant professionals at earlier stages of the project indicates that physical activity recognition is an essential part of cardiac condition monitoring. However, the traditional machine learning method f developing a model for activity recognition suffers two significant challenges; model overfitting and privacy infringements. This research proposes an intelligent and privacy-oriented context-aware decision support system for cardiac health monitoring using the physiological and the activity data of the patient. The system makes use of a federated machine learning approach to develop a model for physical activity recognition. Experimental analysis shows that the federated approach has advantages over the centralized approach in terms of model generalization whilst maintaining the privacy of the user

    Learning from medical data streams: an introduction

    Get PDF
    Clinical practice and research are facing a new challenge created by the rapid growth of health information science and technology, and the complexity and volume of biomedical data. Machine learning from medical data streams is a recent area of research that aims to provide better knowledge extraction and evidence-based clinical decision support in scenarios where data are produced as a continuous flow. This year's edition of AIME, the Conference on Artificial Intelligence in Medicine, enabled the sound discussion of this area of research, mainly by the inclusion of a dedicated workshop. This paper is an introduction to LEMEDS, the Learning from Medical Data Streams workshop, which highlights the contributed papers, the invited talk and expert panel discussion, as well as related papers accepted to the main conference

    A Review of Atrial Fibrillation Detection Methods as a Service

    Get PDF
    Atrial Fibrillation (AF) is a common heart arrhythmia that often goes undetected, and even if it is detected, managing the condition may be challenging. In this paper, we review how the RR interval and Electrocardiogram (ECG) signals, incorporated into a monitoring system, can be useful to track AF events. Were such an automated system to be implemented, it could be used to help manage AF and thereby reduce patient morbidity and mortality. The main impetus behind the idea of developing a service is that a greater data volume analyzed can lead to better patient outcomes. Based on the literature review, which we present herein, we introduce the methods that can be used to detect AF efficiently and automatically via the RR interval and ECG signals. A cardiovascular disease monitoring service that incorporates one or multiple of these detection methods could extend event observation to all times, and could therefore become useful to establish any AF occurrence. The development of an automated and efficient method that monitors AF in real time would likely become a key component for meeting public health goals regarding the reduction of fatalities caused by the disease. Yet, at present, significant technological and regulatory obstacles remain, which prevent the development of any proposed system. Establishment of the scientific foundation for monitoring is important to provide effective service to patients and healthcare professionals

    Heart Rate Variability: A possible machine learning biomarker for mechanical circulatory device complications and heart recovery

    Get PDF
    Cardiovascular disease continues to be the number one cause of death in the United States, with heart failure patients expected to increase to \u3e8 million by 2030. Mechanical circulatory support (MCS) devices are now better able to manage acute and chronic heart failure refractory to medical therapy, both as bridge to transplant or as bridge to destination. Despite significant advances in MCS device design and surgical implantation technique, it remains difficult to predict response to device therapy. Heart rate variability (HRV), measuring the variation in time interval between adjacent heartbeats, is an objective device diagnostic regularly recorded by various MCS devices that has been shown to have significant prognostic value for both sudden cardiac death as well as all-cause mortality in congestive heart failure (CHF) patients. Limited studies have examined HRV indices as promising risk factors and predictors of complication and recovery from left ventricular assist device therapy in end-stage CHF patients. If paired with new advances in machine learning utilization in medicine, HRV represents a potential dynamic biomarker for monitoring and predicting patient status as more patients enter the mechanotrope era of MCS devices for destination therapy

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table
    • ā€¦
    corecore