6,217 research outputs found

    An Inexact Successive Quadratic Approximation Method for Convex L-1 Regularized Optimization

    Full text link
    We study a Newton-like method for the minimization of an objective function that is the sum of a smooth convex function and an l-1 regularization term. This method, which is sometimes referred to in the literature as a proximal Newton method, computes a step by minimizing a piecewise quadratic model of the objective function. In order to make this approach efficient in practice, it is imperative to perform this inner minimization inexactly. In this paper, we give inexactness conditions that guarantee global convergence and that can be used to control the local rate of convergence of the iteration. Our inexactness conditions are based on a semi-smooth function that represents a (continuous) measure of the optimality conditions of the problem, and that embodies the soft-thresholding iteration. We give careful consideration to the algorithm employed for the inner minimization, and report numerical results on two test sets originating in machine learning

    Practical Inexact Proximal Quasi-Newton Method with Global Complexity Analysis

    Full text link
    Recently several methods were proposed for sparse optimization which make careful use of second-order information [10, 28, 16, 3] to improve local convergence rates. These methods construct a composite quadratic approximation using Hessian information, optimize this approximation using a first-order method, such as coordinate descent and employ a line search to ensure sufficient descent. Here we propose a general framework, which includes slightly modified versions of existing algorithms and also a new algorithm, which uses limited memory BFGS Hessian approximations, and provide a novel global convergence rate analysis, which covers methods that solve subproblems via coordinate descent

    Distributed Multi-Task Relationship Learning

    Full text link
    Multi-task learning aims to learn multiple tasks jointly by exploiting their relatedness to improve the generalization performance for each task. Traditionally, to perform multi-task learning, one needs to centralize data from all the tasks to a single machine. However, in many real-world applications, data of different tasks may be geo-distributed over different local machines. Due to heavy communication caused by transmitting the data and the issue of data privacy and security, it is impossible to send data of different task to a master machine to perform multi-task learning. Therefore, in this paper, we propose a distributed multi-task learning framework that simultaneously learns predictive models for each task as well as task relationships between tasks alternatingly in the parameter server paradigm. In our framework, we first offer a general dual form for a family of regularized multi-task relationship learning methods. Subsequently, we propose a communication-efficient primal-dual distributed optimization algorithm to solve the dual problem by carefully designing local subproblems to make the dual problem decomposable. Moreover, we provide a theoretical convergence analysis for the proposed algorithm, which is specific for distributed multi-task relationship learning. We conduct extensive experiments on both synthetic and real-world datasets to evaluate our proposed framework in terms of effectiveness and convergence.Comment: To appear in KDD 201

    Local-Aggregate Modeling for Big-Data via Distributed Optimization: Applications to Neuroimaging

    Full text link
    Technological advances have led to a proliferation of structured big data that have matrix-valued covariates. We are specifically motivated to build predictive models for multi-subject neuroimaging data based on each subject's brain imaging scans. This is an ultra-high-dimensional problem that consists of a matrix of covariates (brain locations by time points) for each subject; few methods currently exist to fit supervised models directly to this tensor data. We propose a novel modeling and algorithmic strategy to apply generalized linear models (GLMs) to this massive tensor data in which one set of variables is associated with locations. Our method begins by fitting GLMs to each location separately, and then builds an ensemble by blending information across locations through regularization with what we term an aggregating penalty. Our so called, Local-Aggregate Model, can be fit in a completely distributed manner over the locations using an Alternating Direction Method of Multipliers (ADMM) strategy, and thus greatly reduces the computational burden. Furthermore, we propose to select the appropriate model through a novel sequence of faster algorithmic solutions that is similar to regularization paths. We will demonstrate both the computational and predictive modeling advantages of our methods via simulations and an EEG classification problem.Comment: 41 pages, 5 figures and 3 table
    • …
    corecore