9,352 research outputs found

    Machine learning risk prediction model for acute coronary syndrome and death from use of non-steroidal anti-inflammatory drugs in administrative data

    Get PDF
    Our aim was to investigate the usefulness of machine learning approaches on linked administrative health data at the population level in predicting older patients’ one-year risk of acute coronary syndrome and death following the use of non-steroidal anti-inflammatory drugs (NSAIDs). Patients from a Western Australian cardiovascular population who were supplied with NSAIDs between 1 Jan 2003 and 31 Dec 2004 were identified from Pharmaceutical Benefits Scheme data. Comorbidities from linked hospital admissions data and medication history were inputs. Admissions for acute coronary syndrome or death within one year from the first supply date were outputs. Machine learning classification methods were used to build models to predict ACS and death. Model performance was measured by the area under the receiver operating characteristic curve (AUC-ROC), sensitivity and specificity. There were 68,889 patients in the NSAIDs cohort with mean age 76 years and 54% were female. 1882 patients were admitted for acute coronary syndrome and 5405 patients died within one year after their first supply of NSAIDs. The multi-layer neural network, gradient boosting machine and support vector machine were applied to build various classification models. The gradient boosting machine achieved the best performance with an average AUC-ROC of 0.72 predicting ACS and 0.84 predicting death. Machine learning models applied to linked administrative data can potentially improve adverse outcome risk prediction. Further investigation of additional data and approaches are required to improve the performance for adverse outcome risk prediction

    Heart Rate Variability: A possible machine learning biomarker for mechanical circulatory device complications and heart recovery

    Get PDF
    Cardiovascular disease continues to be the number one cause of death in the United States, with heart failure patients expected to increase to \u3e8 million by 2030. Mechanical circulatory support (MCS) devices are now better able to manage acute and chronic heart failure refractory to medical therapy, both as bridge to transplant or as bridge to destination. Despite significant advances in MCS device design and surgical implantation technique, it remains difficult to predict response to device therapy. Heart rate variability (HRV), measuring the variation in time interval between adjacent heartbeats, is an objective device diagnostic regularly recorded by various MCS devices that has been shown to have significant prognostic value for both sudden cardiac death as well as all-cause mortality in congestive heart failure (CHF) patients. Limited studies have examined HRV indices as promising risk factors and predictors of complication and recovery from left ventricular assist device therapy in end-stage CHF patients. If paired with new advances in machine learning utilization in medicine, HRV represents a potential dynamic biomarker for monitoring and predicting patient status as more patients enter the mechanotrope era of MCS devices for destination therapy

    Automatic covariate selection in logistic models for chest pain diagnosis: A new approach

    Get PDF
    A newly established method for optimizing logistic models via a minorization-majorization procedure is applied to the problem of diagnosing acute coronary syndromes (ACS). The method provides a principled approach to the selection of covariates which would otherwise require the use of a suboptimal method owing to the size of the covariate set. A strategy for building models is proposed and two models optimized for performance and for simplicity are derived via ten-fold cross-validation. These models confirm that a relatively small set of covariates including clinical and electrocardiographic features can be used successfully in this task. The performance of the models is comparable with previously published models using less principled selection methods. The models prove to be portable when tested on data gathered from three other sites. Whilst diagnostic accuracy and calibration diminishes slightly for these new settings, it remains satisfactory overall. The prospect of building predictive models that are as simple as possible for a required level of performance is valuable if data-driven decision aids are to gain wide acceptance in the clinical situation owing to the need to minimize the time taken to gather and enter data at the bedside
    corecore