40,172 research outputs found

    Machine learning and deep learning

    Full text link
    Today, intelligent systems that offer artificial intelligence capabilities often rely on machine learning. Machine learning describes the capacity of systems to learn from problem-specific training data to automate the process of analytical model building and solve associated tasks. Deep learning is a machine learning concept based on artificial neural networks. For many applications, deep learning models outperform shallow machine learning models and traditional data analysis approaches. In this article, we summarize the fundamentals of machine learning and deep learning to generate a broader understanding of the methodical underpinning of current intelligent systems. In particular, we provide a conceptual distinction between relevant terms and concepts, explain the process of automated analytical model building through machine learning and deep learning, and discuss the challenges that arise when implementing such intelligent systems in the field of electronic markets and networked business. These naturally go beyond technological aspects and highlight issues in human-machine interaction and artificial intelligence servitization.Comment: Published online first in Electronic Market

    Classification in Networked Data: A Toolkit and a Univariate Case Study

    Get PDF
    This paper1 is about classifying entities that are interlinked with entities for which the class is known. After surveying prior work, we present NetKit, a modular toolkit for classification in networked data, and a case-study of its application to networked data used in prior machine learning research. NetKit is based on a node-centric framework in which classifiers comprise a local classifier, a relational classifier, and a collective inference procedure. Various existing node-centric relational learning algorithms can be instantiated with appropriate choices for these components, and new combinations of components realize new algorithms. The case study focuses on univariate network classification, for which the only information used is the structure of class linkage in the network (i.e., only links and some class labels). To our knowledge, no work previously has evaluated systematically the power of class-linkage alone for classification in machine learning benchmark data sets. The results demonstrate that very simple network-classification models perform quite well—well enough that they should be used regularly as baseline classifiers for studies of learning with networked data. The simplest method (which performs remarkably well) highlights the close correspondence between several existing methods introduced for different purposes—that is, Gaussian-field classifiers, Hopfield networks, and relational-neighbor classifiers. The case study also shows that there are two sets of techniques that are preferable in different situations, namely when few versus many labels are known initially. We also demonstrate that link selection plays an important role similar to traditional feature selectionNYU, Stern School of Business, IOMS Department, Center for Digital Economy Researc

    Why (and How) Networks Should Run Themselves

    Full text link
    The proliferation of networked devices, systems, and applications that we depend on every day makes managing networks more important than ever. The increasing security, availability, and performance demands of these applications suggest that these increasingly difficult network management problems be solved in real time, across a complex web of interacting protocols and systems. Alas, just as the importance of network management has increased, the network has grown so complex that it is seemingly unmanageable. In this new era, network management requires a fundamentally new approach. Instead of optimizations based on closed-form analysis of individual protocols, network operators need data-driven, machine-learning-based models of end-to-end and application performance based on high-level policy goals and a holistic view of the underlying components. Instead of anomaly detection algorithms that operate on offline analysis of network traces, operators need classification and detection algorithms that can make real-time, closed-loop decisions. Networks should learn to drive themselves. This paper explores this concept, discussing how we might attain this ambitious goal by more closely coupling measurement with real-time control and by relying on learning for inference and prediction about a networked application or system, as opposed to closed-form analysis of individual protocols

    ODE: A Data Sampling Method for Practical Federated Learning with Streaming Data and Limited Buffer

    Full text link
    Machine learning models have been deployed in mobile networks to deal with the data from different layers to enable automated network management and intelligence on devices. To overcome high communication cost and severe privacy concerns of centralized machine learning, Federated Learning (FL) has been proposed to achieve distributed machine learning among networked devices. While the computation and communication limitation has been widely studied in FL, the impact of on-device storage on the performance of FL is still not explored. Without an efficient and effective data selection policy to filter the abundant streaming data on devices, classical FL can suffer from much longer model training time (more than 4Ă—4\times) and significant inference accuracy reduction (more than 7%7\%), observed in our experiments. In this work, we take the first step to consider the online data selection for FL with limited on-device storage. We first define a new data valuation metric for data selection in FL: the projection of local gradient over an on-device data sample onto the global gradient over the data from all devices. We further design \textbf{ODE}, a framework of \textbf{O}nline \textbf{D}ata s\textbf{E}lection for FL, to coordinate networked devices to store valuable data samples collaboratively, with theoretical guarantees for speeding up model convergence and enhancing final model accuracy, simultaneously. Experimental results on one industrial task (mobile network traffic classification) and three public tasks (synthetic task, image classification, human activity recognition) show the remarkable advantages of ODE over the state-of-the-art approaches. Particularly, on the industrial dataset, ODE achieves as high as 2.5Ă—2.5\times speedup of training time and 6%6\% increase in final inference accuracy, and is robust to various factors in the practical environment
    • …
    corecore