216,690 research outputs found

    Unsupervised feature extraction with autoencoder : for the representation of parkinson´s disease patients

    Get PDF
    Dissertation presented as partial requirement for obtaining the Master’s degree in Information Management, with a specialization in Knowledge Management and Business IntelligenceData representation is one of the fundamental concepts in machine learning. An appropriate representation is found by discovering a structure and automatic detection of patterns in data. In many domains, representation or feature learning is a critical step in improving the performance of machine learning algorithms due to the multidimensionality of data that feeds the model. Some tasks may have different perspectives and approaches depending on how data is represented. In recent years, deep artificial neural networks have provided better solutions to several pattern recognition problems and classification tasks. Deep architectures have also shown their effectiveness in capturing latent features for data representation. In this document, autoencoders will be examined to obtain the representation of Parkinson's disease patients and compared with conventional representation learning algorithms. The results will show whether the proposed method of feature selection leads to the desired accuracy for predicting the severity of Parkinson’s disease

    Handwriting recognition by using deep learning to extract meaningful features

    Full text link
    [EN] Recent improvements in deep learning techniques show that deep models can extract more meaningful data directly from raw signals than conventional parametrization techniques, making it possible to avoid specific feature extraction in the area of pattern recognition, especially for Computer Vision or Speech tasks. In this work, we directly use raw text line images by feeding them to Convolutional Neural Networks and deep Multilayer Perceptrons for feature extraction in a Handwriting Recognition system. The proposed recognition system, based on Hidden Markov Models that are hybridized with Neural Networks, has been tested with the IAM Database, achieving a considerable improvement.Work partially supported by the Spanish MINECO and FEDER founds under project TIN2017-85854-C4-2-R.Pastor Pellicer, J.; Castro-Bleda, MJ.; España Boquera, S.; Zamora-Martinez, FJ. (2019). Handwriting recognition by using deep learning to extract meaningful features. AI Communications. 32(2):101-112. https://doi.org/10.3233/AIC-170562S101112322Baldi, P., Brunak, S., Frasconi, P., Soda, G., & Pollastri, G. (1999). Exploiting the past and the future in protein secondary structure prediction. Bioinformatics, 15(11), 937-946. doi:10.1093/bioinformatics/15.11.937LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. doi:10.1038/nature14539Bertolami, R., & Bunke, H. (2008). Hidden Markov model-based ensemble methods for offline handwritten text line recognition. Pattern Recognition, 41(11), 3452-3460. doi:10.1016/j.patcog.2008.04.003Bianne-Bernard, A.-L., Menasri, F., Mohamad, R. A.-H., Mokbel, C., Kermorvant, C., & Likforman-Sulem, L. (2011). Dynamic and Contextual Information in HMM Modeling for Handwritten Word Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(10), 2066-2080. doi:10.1109/tpami.2011.22C.M. Bishop, Neural networks for pattern recognition, Oxford University Press, 1995.T. Bluche, H. Ney and C. Kermorvant, Feature extraction with convolutional neural networks for handwritten word recognition, in: 12th International Conference on Document Analysis and Recognition (ICDAR), 2013, pp. 285–289.T. Bluche, H. Ney and C. Kermorvant, Tandem HMM with convolutional neural network for handwritten word recognition, in: 38th International Conference on Acoustics Speech and Signal Processing (ICASSP), 2013, pp. 2390–2394.T. Bluche, H. Ney and C. Kermorvant, A comparison of sequence-trained deep neural networks and recurrent neural networks optical modeling for handwriting recognition, in: Slsp-2014, 2014, pp. 1–12.H. Bourlard and N. Morgan, Connectionist Speech Recognition – A Hybrid Approach, Series in Engineering and Computer Science, Vol. 247, Kluwer Academic, 1994.Bozinovic, R. M., & Srihari, S. N. (1989). Off-line cursive script word recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(1), 68-83. doi:10.1109/34.23114H. Bunke, Recognition of cursive roman handwriting – past, present and future, in: International Conference on Document Analysis and Recognition, Vol. 1, 2003, pp. 448–459.E. Caillault, C. Viard-Gaudin and A. Rahim Ahmad, MS-TDNN with global discriminant trainings, in: International Conference on Document Analysis and Recognition (ICDAR), 2005, pp. 856–860.P. Doetsch, M. Kozielski and H. Ney, Fast and robust training of recurrent neural networks for offline handwriting recognition, in: 14th International Conference on Frontiers in Handwriting Recognition (ICFHR), 2014, pp. 279–284.P. Dreuw, P. Doetsch, C. Plahl and H. Ney, Hierarchical hybrid MLP/HMM or rather MLP features for a discriminatively trained Gaussian HMM: A comparison for offline handwriting recognition, in: International Conference on Image Processing (ICIP), 2011, pp. 3541–3544.Dreuw, P., Heigold, G., & Ney, H. (2011). Confidence- and margin-based MMI/MPE discriminative training for off-line handwriting recognition. International Journal on Document Analysis and Recognition (IJDAR), 14(3), 273-288. doi:10.1007/s10032-011-0160-xEspaña-Boquera, S., Castro-Bleda, M. J., Gorbe-Moya, J., & Zamora-Martinez, F. (2011). Improving Offline Handwritten Text Recognition with Hybrid HMM/ANN Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(4), 767-779. doi:10.1109/tpami.2010.141A. Graves, S. Fernández, F. Gomez and J. Schmidhuber, Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks, in: 23rd International Conference on Machine Learning (ICML), ACM, 2006, pp. 369–376.A. Graves and N. Jaitly, Towards end-to-end speech recognition with recurrent neural networks, in: 31st International Conference on Machine Learning (ICML), 2014, pp. 1764–1772.Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H., & Schmidhuber, J. (2009). A Novel Connectionist System for Unconstrained Handwriting Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(5), 855-868. doi:10.1109/tpami.2008.137A. Graves and J. Schmidhuber, Framewise phoneme classification with bidirectional LSTM networks, in: International Joint Conference on Neural Networks (IJCNN), Vol. 4, 2005, pp. 2047–2052.A. Graves and J. Schmidhuber, Offline handwriting recognition with multidimensional recurrent neural networks, in: Advances in Neural Information Processing Systems (NIPS), 2009, pp. 545–552.F. Grézl, M. Karafiát, S. Kontár and J. Černocký, Probabilistic and bottle-neck features for LVCSR of meetings, in: International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vol. 4, 2007.Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735Impedovo, S. (2014). More than twenty years of advancements on Frontiers in handwriting recognition. Pattern Recognition, 47(3), 916-928. doi:10.1016/j.patcog.2013.05.027Jaeger, S., Manke, S., Reichert, J., & Waibel, A. (2001). Online handwriting recognition: the NPen++ recognizer. International Journal on Document Analysis and Recognition, 3(3), 169-180. doi:10.1007/pl00013559M. Kozielski, P. Doetsch and H. Ney, Improvements in RWTH’s system for off-line handwriting recognition, in: 12th International Conference on Document Analysis and Recognition (ICDAR), IEEE, 2013, pp. 935–939.A. Krizhevsky, I. Sutskever and G.E. Hinton, ImageNet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems (NIPS), F. Pereira, C.J.C. Burges, L. Bottou and K.Q. Weinberger, eds, Vol. 25, Curran Associates, Inc., 2012, pp. 1097–1105.Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. doi:10.1109/5.726791M. Liwicki, A. Graves, H. Bunke and J. Schmidhuber, A novel approach to on-line handwriting recognition based on bidirectional long short-term memory networks, in: 9th International Conference on Document Analysis and Recognition (ICDAR), 2007, pp. 367–371.Marti, U.-V., & Bunke, H. (2002). The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition, 5(1), 39-46. doi:10.1007/s100320200071S. Marukatat, T. Artieres, R. Gallinari and B. Dorizzi, Sentence recognition through hybrid neuro-Markovian modeling, in: 6th International Conference on Document Analysis and Recognition (ICDAR), 2001, pp. 731–735.F.J. Och, Minimum error rate training in statistical machine translation, in: 41st Annual Meeting on Association for Computational Linguistics, ACL’03, Vol. 1, 2003, pp. 160–167.J. Pastor-Pellicer, S. España-Boquera, M.J. Castro-Bleda and F. Zamora-Martínez, A combined convolutional neural network and dynamic programming approach for text line normalization, in: 13th International Conference on Document Analysis and Recognition (ICDAR), 2015.J. Pastor-Pellicer, S. España-Boquera, F. Zamora-Martínez, M. Zeshan Afzal and M.J. Castro-Bleda, Insights on the use of convolutional neural networks for document image binarization, in: The International Work-Conference on Artificial Neural Networks, Vol. 9095, 2015, pp. 115–126.V. Pham, T. Bluche, C. Kermorvant and J. Louradour, Dropout improves recurrent neural networks for handwriting recognition, in: International Conference on Frontiers in Handwriting Recognition (ICFHR), 2014, pp. 285–290.Plamondon, R., & Srihari, S. N. (2000). Online and off-line handwriting recognition: a comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1), 63-84. doi:10.1109/34.824821Plötz, T., & Fink, G. A. (2009). Markov models for offline handwriting recognition: a survey. International Journal on Document Analysis and Recognition (IJDAR), 12(4), 269-298. doi:10.1007/s10032-009-0098-4A. Poznanski and L. Wolf, CNN-N-gram for HandwritingWord recognition, in: Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2305–2314.Puigcerver, J. (2017). Are Multidimensional Recurrent Layers Really Necessary for Handwritten Text Recognition? 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). doi:10.1109/icdar.2017.20L.R. Rabiner, A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, 1989.Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., … Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 211-252. doi:10.1007/s11263-015-0816-yT.N. Sainath, B. Kingsbury and B. Ramabhadran, Auto-encoder bottleneck features using deep belief networks, in: International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2012, pp. 4153–4156.Sayre, K. M. (1973). Machine recognition of handwritten words: A project report. Pattern Recognition, 5(3), 213-228. doi:10.1016/0031-3203(73)90044-7Schenkel, M., Guyon, I., & Henderson, D. (1995). On-line cursive script recognition using time-delay neural networks and hidden Markov models. Machine Vision and Applications, 8(4), 215-223. doi:10.1007/bf01219589Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673-2681. doi:10.1109/78.650093A.W. Senior and A.J. Robinson, An off-line cursive handwriting recognition system, in: IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, 1998, pp. 309–321.E. Singer and R.P. Lippman, A speech recognizer using radial basis function neural networks in an HMM framework, in: International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 1, IEEE, 1992, pp. 629–632.J. Stadermann, A hybrid SVM/HMM acoustic modeling approach to automatic speech recognition, in: International Conference on Spoken Language Processing (ICSLP), 2004.A. Stolcke, SRILM: An extensible language modeling toolkit, in: International Conference on Spoken Language Processing (ICSLP), 2002, pp. 901–904.C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke and A. Rabinovich, Going deeper with convolutions, in: Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1–12.TOSELLI, A. H., JUAN, A., GONZÁLEZ, J., SALVADOR, I., VIDAL, E., CASACUBERTA, F., … NEY, H. (2004). INTEGRATED HANDWRITING RECOGNITION AND INTERPRETATION USING FINITE-STATE MODELS. International Journal of Pattern Recognition and Artificial Intelligence, 18(04), 519-539. doi:10.1142/s0218001404003344Toselli, A. H., Romero, V., Pastor, M., & Vidal, E. (2010). Multimodal interactive transcription of text images. Pattern Recognition, 43(5), 1814-1825. doi:10.1016/j.patcog.2009.11.019J.M. Vilar, Efficient computation of confidence intervals for word error rates, in: International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2008, pp. 5101–5104.Vinciarelli, A. (2002). A survey on off-line Cursive Word Recognition. Pattern Recognition, 35(7), 1433-1446. doi:10.1016/s0031-3203(01)00129-7Voigtlaender, P., Doetsch, P., & Ney, H. (2016). Handwriting Recognition with Large Multidimensional Long Short-Term Memory Recurrent Neural Networks. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR). doi:10.1109/icfhr.2016.0052E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu and Y. Wang, Intel math kernel library, in: High-Performance Computing on the Intel® Xeon Phi™, Springer, 2014, pp. 167–188.F. Zamora-Martínez et al., April-ANN Toolkit, a Pattern Recognizer in Lua, Artificial Neural Networks Module, 2013, https://github.com/pakozm/ [github.com]april-ann.Zamora-Martínez, F., Frinken, V., España-Boquera, S., Castro-Bleda, M. J., Fischer, A., & Bunke, H. (2014). Neural network language models for off-line handwriting recognition. Pattern Recognition, 47(4), 1642-1652. doi:10.1016/j.patcog.2013.10.020Zeyer, A., Beck, E., Schlüter, R., & Ney, H. (2017). CTC in the Context of Generalized Full-Sum HMM Training. Interspeech 2017. doi:10.21437/interspeech.2017-107

    Document Layout Analysis and Recognition Systems

    Get PDF
    Automatic extraction of relevant knowledge to domain-specific questions from Optical Character Recognition (OCR) documents is critical for developing intelligent systems, such as document search engines, sentiment analysis, and information retrieval, since hands-on knowledge extraction by a domain expert with a large volume of documents is intensive, unscalable, and time-consuming. There have been a number of studies that have automatically extracted relevant knowledge from OCR documents, such as ABBY and Sandford Natural Language Processing (NLP). Despite the progress, there are still limitations yet-to-be solved. For instance, NLP often fails to analyze a large document. In this thesis, we propose a knowledge extraction framework, which takes domain-specific questions as input and provides the most relevant sentence/paragraph to the given questions in the document. Overall, our proposed framework has two phases. First, an OCR document is reconstructed into a semi-structured document (a document with hierarchical structure of (sub)sections and paragraphs). Then, relevant sentence/paragraph for a given question is identified from the reconstructed semi structured document. Specifically, we proposed (1) a method that converts an OCR document into a semi structured document using text attributes such as font size, font height, and boldface (in Chapter 2), (2) an image-based machine learning method that extracts Table of Contents (TOC) to provide an overall structure of the document (in Chapter 3), (3) a document texture-based deep learning method (DoT-Net) that classifies types of blocks such as text, image, and table (in Chapter 4), and (4) a Question & Answer (Q&A) system that retrieves most relevant sentence/paragraph for a domain-specific question. A large number of document intelligent systems can benefit from our proposed automatic knowledge extraction system to construct a Q&A system for OCR documents. Our Q&A system has applied to extract domain specific information from business contracts at GE Power

    Document image analysis and recognition: a survey

    Get PDF
    This paper analyzes the problems of document image recognition and the existing solutions. Document recognition algorithms have been studied for quite a long time, but despite this, currently, the topic is relevant and research continues, as evidenced by a large number of associated publications and reviews. However, most of these works and reviews are devoted to individual recognition tasks. In this review, the entire set of methods, approaches, and algorithms necessary for document recognition is considered. A preliminary systematization allowed us to distinguish groups of methods for extracting information from documents of different types: single-page and multi-page, with text and handwritten contents, with a fixed template and flexible structure, and digitalized via different ways: scanning, photographing, video recording. Here, we consider methods of document recognition and analysis applied to a wide range of tasks: identification and verification of identity, due diligence, machine learning algorithms, questionnaires, and audits. The groups of methods necessary for the recognition of a single page image are examined: the classical computer vision algorithms, i.e., keypoints, local feature descriptors, Fast Hough Transforms, image binarization, and modern neural network models for document boundary detection, document classification, document structure analysis, i.e., text blocks and tables localization, extraction and recognition of the details, post-processing of recognition results. The review provides a description of publicly available experimental data packages for training and testing recognition algorithms. Methods for optimizing the performance of document image analysis and recognition methods are described.The reported study was funded by RFBR, project number 20-17-50177. The authors thank Sc. D. Vladimir L. Arlazarov (FRC CSC RAS), Pavel Bezmaternykh (FRC CSC RAS), Elena Limonova (FRC CSC RAS), Ph. D. Dmitry Polevoy (FRC CSC RAS), Daniil Tropin (LLC “Smart Engines Service”), Yuliya Chernysheva (LLC “Smart Engines Service”), Yuliya Shemyakina (LLC “Smart Engines Service”) for valuable comments and suggestions
    corecore