41 research outputs found

    Computing Hive Plots: A Combinatorial Framework

    Full text link
    Hive plots are a graph visualization style placing vertices on a set of radial axes emanating from a common center and drawing edges as smooth curves connecting their respective endpoints. In previous work on hive plots, assignment to an axis and vertex positions on each axis were determined based on selected vertex attributes and the order of axes was prespecified. Here, we present a new framework focusing on combinatorial aspects of these drawings to extend the original hive plot idea and optimize visual properties such as the total edge length and the number of edge crossings in the resulting hive plots. Our framework comprises three steps: (1) partition the vertices into multiple groups, each corresponding to an axis of the hive plot; (2) optimize the cyclic axis order to bring more strongly connected groups near each other; (3) optimize the vertex ordering on each axis to minimize edge crossings. Each of the three steps is related to a well-studied, but NP-complete computational problem. We combine and adapt suitable algorithmic approaches, implement them as an instantiation of our framework and show in a case study how it can be applied in a practical setting. Furthermore, we conduct computational experiments to gain further insights regarding algorithmic choices of the framework. The code of the implementation and a prototype web application can be found on OSF.Comment: Appears in the Proceedings of the 31st International Symposium on Graph Drawing and Network Visualization (GD 2023

    Real-time big data processing for anomaly detection : a survey

    Get PDF
    The advent of connected devices and omnipresence of Internet have paved way for intruders to attack networks, which leads to cyber-attack, financial loss, information theft in healthcare, and cyber war. Hence, network security analytics has become an important area of concern and has gained intensive attention among researchers, off late, specifically in the domain of anomaly detection in network, which is considered crucial for network security. However, preliminary investigations have revealed that the existing approaches to detect anomalies in network are not effective enough, particularly to detect them in real time. The reason for the inefficacy of current approaches is mainly due the amassment of massive volumes of data though the connected devices. Therefore, it is crucial to propose a framework that effectively handles real time big data processing and detect anomalies in networks. In this regard, this paper attempts to address the issue of detecting anomalies in real time. Respectively, this paper has surveyed the state-of-the-art real-time big data processing technologies related to anomaly detection and the vital characteristics of associated machine learning algorithms. This paper begins with the explanation of essential contexts and taxonomy of real-time big data processing, anomalous detection, and machine learning algorithms, followed by the review of big data processing technologies. Finally, the identified research challenges of real-time big data processing in anomaly detection are discussed. © 2018 Elsevier Lt

    Data-Driven Anomaly Detection in Industrial Networks

    Get PDF
    Since the conception of the first Programmable Logic Controllers (PLCs) in the 1960s, Industrial Control Systems (ICSs) have evolved vastly. From the primitive isolated setups, ICSs have become increasingly interconnected, slowly forming the complex networked environments, collectively known as Industrial Networks (INs), that we know today. Since ICSs are responsible for a wide range of physical processes, including those belonging to Critical Infrastructures (CIs), securing INs is vital for the well-being of modern societies. Out of the many research advances on the field, Anomaly Detection Systems (ADSs) play a prominent role. These systems monitor IN and/or ICS behavior to detect abnormal events, known or unknown. However, as the complexity of INs has increased, monitoring them in the search of anomalous trends has effectively become a Big Data problem. In other words, IN data has become too complex to process it by traditional means, due to its large scale, diversity and generation speeds. Nevertheless, ADSs designed for INs have not evolved at the same pace, and recent proposals are not designed to handle this data complexity, as they do not scale well or do not leverage the majority of the data types created in INs. This thesis aims to fill that gap, by presenting two main contributions: (i) a visual flow monitoring system and (ii) a multivariate ADS that is able to tackle data heterogeneity and to scale efficiently. For the flow monitor, we propose a system that, based on current flow data, builds security visualizations depicting network behavior while highlighting anomalies. For the multivariate ADS, we analyze the performance of Multivariate Statistical Process Control (MSPC) for detecting and diagnosing anomalies, and later we present a Big Data, MSPCinspired ADS that monitors field and network data to detect anomalies. The approaches are experimentally validated by building INs in test environments and analyzing the data created by them. Based on this necessity for conducting IN security research in a rigorous and reproducible environment, we also propose the design of a testbed that serves this purpose

    Transferability of Intrusion Detection Systems Using Machine Learning between Networks

    Get PDF
    Intrusion detection systems (IDS) using machine learning is a next generation tool to strengthen the cyber security of networks. Such systems possess the potential to detect zero-day attacks, attacks that are unknown to researchers and are occurring for the first time in history. This thesis tackles novel ideas in this research domain and solves foreseeable issues of a practical deployment of such tool. The main issue addressed in this thesis are situations where an entity intends to implement an IDS using machine learning onto their network, but do not have attack data available from their own network to train the IDS. A solution is to train the IDS using attack data from other networks. However, there is a degree of uncertainty whether this is feasible as different networks use different applications and have different uses. Such IDS may not be able to adequately operate on a network when trained on data from an entirely different network. The proposed methodology in this research recommends the training set should combine attack data collected from other networks with benign traffic which originates from the network the IDS is to be implemented on. This method is compared with a training set which is completely composed of both attack and benign data from a completely different network. The best performing model implemented with both training sets demonstrated the feasibility of both scenarios. Both versions of that model achieved an F1 score of 0.82 and 0.81 respectively, and both versions detected roughly 70% of attacks and 99% of benign traffic. However, most IDSs trained on the former training set listed yielded the best results. The main benefit of training a model on target network benign data is to minimize false positive classifications. The average model witnessed a 113% boost in precision, compared to their counterparts trained on foreign network benign data. Another issue addressed in this thesis is the detection scope of attacks. The IDS scope of detection is limited to the attacks it is trained on. Using the proposed IDS training set, an intuitive feature selection scheme and classification threshold adjustment, this thesis improves the IDS scope of detection to detect attacks outside of its training data. Feature selection can manipulate an IDS to detect specific attacks not included in its training data. Using threshold tuning, the IDSs in this thesis detected up to 200% more attacks. Both issues and solutions are simulated and verified in two separate scenarios using neural networks and random forest

    Near real-time network analysis for the identification of malicious activity

    Get PDF
    The evolution of technology and the increasing connectivity between devices lead to an increased risk of cyberattacks. Reliable protection systems, such as Intrusion Detection System (IDS) and Intrusion Prevention System (IPS), are essential to try to prevent, detect and counter most of the attacks. However, the increased creativity and type of attacks raise the need for more resources and processing power for the protection systems which, in turn, requires horizontal scalability to keep up with the massive companies’ network infrastructure and with the complexity of attacks. Technologies like machine learning, show promising results and can be of added value in the detection and prevention of attacks in near real-time. But good algorithms and tools are not enough. They require reliable and solid datasets to be able to effectively train the protection systems. The development of a good dataset requires horizontal-scalable, robust, modular and faulttolerant systems so that the analysis may be done in near real-time. This work describes an architecture design for horizontal-scaling capture, storage and analyses, able to collect packets from multiple sources and analyse them in a parallel fashion. The system depends on multiple modular nodes with specific roles to support different algorithms and tools.A evolução da tecnologia e o aumento da conectividade entre dispositivos, levam a um aumento do risco de ciberataques. Os sistemas de deteção de intrusão são essenciais para tentar prevenir, detetar e conter a maioria dos ataques. No entanto, o aumento da criatividade e do tipo de ataques aumenta a necessidade dos sistemas de proteção possuírem cada vez mais recursos e poder computacional. Por sua vez, requerem escalabilidade horizontal para acompanhar a massiva infraestrutura de rede das empresas e a complexidade dos ataques. Tecnologias como machine learning apresentam resultados promissores e podem ser de grande valor na deteção e prevenção de ataques em tempo útil. No entanto, a utilização dos algoritmos e ferramentas requer sempre um conjunto de dados sólidos e confiáveis para treinar os sistemas de proteção de maneira eficaz. A implementação de um bom conjunto de dados requer sistemas horizontalmente escaláveis, robustos, modulares e tolerantes a falhas para que a análise seja rápida e rigorosa. Este trabalho descreve a arquitetura de um sistema de captura, armazenamento e análise, capaz de capturar pacotes de múltiplas fontes e analisá-los de forma paralela. O sistema depende de vários nós modulares com funções específicas para oferecer suporte a diferentes algoritmos e ferramentas

    Network Traffic Measurements, Applications to Internet Services and Security

    Get PDF
    The Internet has become along the years a pervasive network interconnecting billions of users and is now playing the role of collector for a multitude of tasks, ranging from professional activities to personal interactions. From a technical standpoint, novel architectures, e.g., cloud-based services and content delivery networks, innovative devices, e.g., smartphones and connected wearables, and security threats, e.g., DDoS attacks, are posing new challenges in understanding network dynamics. In such complex scenario, network measurements play a central role to guide traffic management, improve network design, and evaluate application requirements. In addition, increasing importance is devoted to the quality of experience provided to final users, which requires thorough investigations on both the transport network and the design of Internet services. In this thesis, we stress the importance of users’ centrality by focusing on the traffic they exchange with the network. To do so, we design methodologies complementing passive and active measurements, as well as post-processing techniques belonging to the machine learning and statistics domains. Traffic exchanged by Internet users can be classified in three macro-groups: (i) Outbound, produced by users’ devices and pushed to the network; (ii) unsolicited, part of malicious attacks threatening users’ security; and (iii) inbound, directed to users’ devices and retrieved from remote servers. For each of the above categories, we address specific research topics consisting in the benchmarking of personal cloud storage services, the automatic identification of Internet threats, and the assessment of quality of experience in the Web domain, respectively. Results comprise several contributions in the scope of each research topic. In short, they shed light on (i) the interplay among design choices of cloud storage services, which severely impact the performance provided to end users; (ii) the feasibility of designing a general purpose classifier to detect malicious attacks, without chasing threat specificities; and (iii) the relevance of appropriate means to evaluate the perceived quality of Web pages delivery, strengthening the need of users’ feedbacks for a factual assessment

    UGR’16: A New Dataset for the Evaluation of Cyclostationarity-Based Network IDSs

    Get PDF
    The evaluation of algorithms and techniques to implement intrusion detection systems heavily rely on the existence of well designed datasets. In the last years, a lot of efforts have been done towards building these datasets. Yet, there is still room to improve. In this paper, a comprehensive review of existing datasets is first done, making emphasis on their main shortcomings. Then, we present a new dataset that is built with real traffic and up-to-date attacks. The main advantage of this dataset over previous ones is its usefulness for evaluating IDSs that consider long-term evolution and traffic periodicity. Models that consider differences in daytime/night or weekdays/weekends can also be trained and evaluated with it. We discuss all the requirements for a modern IDS evaluation dataset and analyze how the one presented here meets the different needs

    Cyber Security and Critical Infrastructures

    Get PDF
    This book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles: an editorial explaining current challenges, innovative solutions, real-world experiences including critical infrastructure, 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems, and a review of cloud, edge computing, and fog's security and privacy issues
    corecore