81,224 research outputs found

    Machine Learning and the Future of Realism

    Get PDF
    The preceding three decades have seen the emergence, rise, and proliferation of machine learning (ML). From half-recognised beginnings in perceptrons, neural nets, and decision trees, algorithms that extract correlations (that is, patterns) from a set of data points have broken free from their origin in computational cognition to embrace all forms of problem solving, from voice recognition to medical diagnosis to automated scientific research and driverless cars, and it is now widely opined that the real industrial revolution lies less in mobile phone and similar than in the maturation and universal application of ML. Among the consequences just might be the triumph of anti-realism over realism

    What Can Artificial Intelligence Do for Scientific Realism?

    Get PDF
    The paper proposes a synthesis between human scientists and artificial representation learning models as a way of augmenting epistemic warrants of realist theories against various anti-realist attempts. Towards this end, the paper fleshes out unconceived alternatives not as a critique of scientific realism but rather a reinforcement, as it rejects the retrospective interpretations of scientific progress, which brought about the problem of alternatives in the first place. By utilising adversarial machine learning, the synthesis explores possibility spaces of available evidence for unconceived alternatives providing modal knowledge of what is possible therein. As a result, the epistemic warrant of synthesised realist theories should emerge bolstered as the underdetermination by available evidence gets reduced. While shifting the realist commitment away from theoretical artefacts towards modalities of the possibility spaces, the synthesis comes out as a kind of perspectival modelling

    Long-Term Human Video Generation of Multiple Futures Using Poses

    Full text link
    Predicting future human behavior from an input human video is a useful task for applications such as autonomous driving and robotics. While most previous works predict a single future, multiple futures with different behavior can potentially occur. Moreover, if the predicted future is too short (e.g., less than one second), it may not be fully usable by a human or other systems. In this paper, we propose a novel method for future human pose prediction capable of predicting multiple long-term futures. This makes the predictions more suitable for real applications. Also, from the input video and the predicted human behavior, we generate future videos. First, from an input human video, we generate sequences of future human poses (i.e., the image coordinates of their body-joints) via adversarial learning. Adversarial learning suffers from mode collapse, which makes it difficult to generate a variety of multiple poses. We solve this problem by utilizing two additional inputs to the generator to make the outputs diverse, namely, a latent code (to reflect various behaviors) and an attraction point (to reflect various trajectories). In addition, we generate long-term future human poses using a novel approach based on unidimensional convolutional neural networks. Last, we generate an output video based on the generated poses for visualization. We evaluate the generated future poses and videos using three criteria (i.e., realism, diversity and accuracy), and show that our proposed method outperforms other state-of-the-art works

    Crossing the symbolic threshold: a critical review of Terrence Deacon's The Symbolic Species

    Get PDF
    Terrence Deacon's views about the origin of language are based on a particular notion of a symbol. While the notion is derived from Peirce's semiotics, it diverges from that source and needs to be investigated on its own terms in order to evaluate the idea that the human species has crossed the symbolic threshold. Deacon's view is defended from the view that symbols in the animal world are widespread and from the extreme connectionist view that they are not even to be found in humans. Deacon's treatment of symbols involves a form of holism, as a symbol needs to be part of a system of symbols. He also appears to take a realist view of symbols. That combination of holism and realism makes the threshold a sharp threshold, which makes it hard to explain how the threshold was crossed. This difficulty is overcome if we take a mild realist position towards symbols, in the style of Dennett. Mild realism allows intermediate stages in the crossing but does not undermine Deacon's claim that the threshold is difficult to cross or the claim that it needs to be crossed quickly

    Using Photorealistic Face Synthesis and Domain Adaptation to Improve Facial Expression Analysis

    Full text link
    Cross-domain synthesizing realistic faces to learn deep models has attracted increasing attention for facial expression analysis as it helps to improve the performance of expression recognition accuracy despite having small number of real training images. However, learning from synthetic face images can be problematic due to the distribution discrepancy between low-quality synthetic images and real face images and may not achieve the desired performance when the learned model applies to real world scenarios. To this end, we propose a new attribute guided face image synthesis to perform a translation between multiple image domains using a single model. In addition, we adopt the proposed model to learn from synthetic faces by matching the feature distributions between different domains while preserving each domain's characteristics. We evaluate the effectiveness of the proposed approach on several face datasets on generating realistic face images. We demonstrate that the expression recognition performance can be enhanced by benefiting from our face synthesis model. Moreover, we also conduct experiments on a near-infrared dataset containing facial expression videos of drivers to assess the performance using in-the-wild data for driver emotion recognition.Comment: 8 pages, 8 figures, 5 tables, accepted by FG 2019. arXiv admin note: substantial text overlap with arXiv:1905.0028

    Pandora: Description of a Painting Database for Art Movement Recognition with Baselines and Perspectives

    Full text link
    To facilitate computer analysis of visual art, in the form of paintings, we introduce Pandora (Paintings Dataset for Recognizing the Art movement) database, a collection of digitized paintings labelled with respect to the artistic movement. Noting that the set of databases available as benchmarks for evaluation is highly reduced and most existing ones are limited in variability and number of images, we propose a novel large scale dataset of digital paintings. The database consists of more than 7700 images from 12 art movements. Each genre is illustrated by a number of images varying from 250 to nearly 1000. We investigate how local and global features and classification systems are able to recognize the art movement. Our experimental results suggest that accurate recognition is achievable by a combination of various categories.To facilitate computer analysis of visual art, in the form of paintings, we introduce Pandora (Paintings Dataset for Recognizing the Art movement) database, a collection of digitized paintings labelled with respect to the artistic movement. Noting that the set of databases available as benchmarks for evaluation is highly reduced and most existing ones are limited in variability and number of images, we propose a novel large scale dataset of digital paintings. The database consists of more than 7700 images from 12 art movements. Each genre is illustrated by a number of images varying from 250 to nearly 1000. We investigate how local and global features and classification systems are able to recognize the art movement. Our experimental results suggest that accurate recognition is achievable by a combination of various categories.Comment: 11 pages, 1 figure, 6 table
    • 

    corecore