82 research outputs found

    Efficient Discovery of Association Rules and Frequent Itemsets through Sampling with Tight Performance Guarantees

    Full text link
    The tasks of extracting (top-KK) Frequent Itemsets (FI's) and Association Rules (AR's) are fundamental primitives in data mining and database applications. Exact algorithms for these problems exist and are widely used, but their running time is hindered by the need of scanning the entire dataset, possibly multiple times. High quality approximations of FI's and AR's are sufficient for most practical uses, and a number of recent works explored the application of sampling for fast discovery of approximate solutions to the problems. However, these works do not provide satisfactory performance guarantees on the quality of the approximation, due to the difficulty of bounding the probability of under- or over-sampling any one of an unknown number of frequent itemsets. In this work we circumvent this issue by applying the statistical concept of \emph{Vapnik-Chervonenkis (VC) dimension} to develop a novel technique for providing tight bounds on the sample size that guarantees approximation within user-specified parameters. Our technique applies both to absolute and to relative approximations of (top-KK) FI's and AR's. The resulting sample size is linearly dependent on the VC-dimension of a range space associated with the dataset to be mined. The main theoretical contribution of this work is a proof that the VC-dimension of this range space is upper bounded by an easy-to-compute characteristic quantity of the dataset which we call \emph{d-index}, and is the maximum integer dd such that the dataset contains at least dd transactions of length at least dd such that no one of them is a superset of or equal to another. We show that this bound is strict for a large class of datasets.Comment: 19 pages, 7 figures. A shorter version of this paper appeared in the proceedings of ECML PKDD 201

    Reinforcement Learning with Human Feedback for Realistic Traffic Simulation

    Full text link
    In light of the challenges and costs of real-world testing, autonomous vehicle developers often rely on testing in simulation for the creation of reliable systems. A key element of effective simulation is the incorporation of realistic traffic models that align with human knowledge, an aspect that has proven challenging due to the need to balance realism and diversity. This works aims to address this by developing a framework that employs reinforcement learning with human preference (RLHF) to enhance the realism of existing traffic models. This study also identifies two main challenges: capturing the nuances of human preferences on realism and the unification of diverse traffic simulation models. To tackle these issues, we propose using human feedback for alignment and employ RLHF due to its sample efficiency. We also introduce the first dataset for realism alignment in traffic modeling to support such research. Our framework, named TrafficRLHF, demonstrates its proficiency in generating realistic traffic scenarios that are well-aligned with human preferences, as corroborated by comprehensive evaluations on the nuScenes dataset.Comment: 9 pages, 4 figure

    Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search

    Get PDF
    International audienceThe discovery of patterns that accurately discriminate one class label from another remains a challenging data mining task. Subgroup discovery (SD) is one of the frameworks that enables to elicit such interesting patterns from labeled data. A question remains fairly open: How to select an accurate heuristic search technique when exhaustive enumeration of the pattern space is infeasible? Existing approaches make use of beam-search, sampling, and genetic algorithms for discovering a pattern set that is non-redundant and of high quality w.r.t. a pattern quality measure. We argue that such approaches produce pattern sets that lack of diversity: Only few patterns of high quality, and different enough, are discovered. Our main contribution is then to formally define pattern mining as a game and to solve it with Monte Carlo tree search (MCTS). It can be seen as an exhaustive search guided by random simulations which can be stopped early (limited budget) by virtue of its best-first search property. We show through a comprehensive set of experiments how MCTS enables the anytime discovery of a diverse pattern set of high quality. It out-performs other approaches when dealing with a large pattern search space and for different quality measures. Thanks to its genericity, our MCTS approach can be used for SD but also for many other pattern mining tasks

    Analyzing Granger causality in climate data with time series classification methods

    Get PDF
    Attribution studies in climate science aim for scientifically ascertaining the influence of climatic variations on natural or anthropogenic factors. Many of those studies adopt the concept of Granger causality to infer statistical cause-effect relationships, while utilizing traditional autoregressive models. In this article, we investigate the potential of state-of-the-art time series classification techniques to enhance causal inference in climate science. We conduct a comparative experimental study of different types of algorithms on a large test suite that comprises a unique collection of datasets from the area of climate-vegetation dynamics. The results indicate that specialized time series classification methods are able to improve existing inference procedures. Substantial differences are observed among the methods that were tested

    TensorLy: Tensor Learning in Python

    Get PDF
    Tensors are higher-order extensions of matrices. While matrix methods form the cornerstone of traditional machine learning and data analysis, tensor methods have been gaining increasing traction. However, software support for tensor operations is not on the same footing. In order to bridge this gap, we have developed TensorLy, a Python library that provides a high-level API for tensor methods and deep tensorized neural networks. TensorLy aims to follow the same standards adopted by the main projects of the Python scientific community, and to seamlessly integrate with them. Its BSD license makes it suitable for both academic and commercial applications. TensorLy's backend system allows users to perform computations with several libraries such as NumPy or PyTorch to name but a few. They can be scaled on multiple CPU or GPU machines. In addition, using the deep-learning frameworks as backend allows to easily design and train deep tensorized neural networks. TensorLy is available at https://github.com/tensorly/tensorl

    Computational support for academic peer review:a perspective from artificial intelligence

    Get PDF
    • …
    corecore