1,823 research outputs found

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Exploration of Reaction Pathways and Chemical Transformation Networks

    Full text link
    For the investigation of chemical reaction networks, the identification of all relevant intermediates and elementary reactions is mandatory. Many algorithmic approaches exist that perform explorations efficiently and automatedly. These approaches differ in their application range, the level of completeness of the exploration, as well as the amount of heuristics and human intervention required. Here, we describe and compare the different approaches based on these criteria. Future directions leveraging the strengths of chemical heuristics, human interaction, and physical rigor are discussed.Comment: 48 pages, 4 figure

    Beyond rotamers: a generative, probabilistic model of side chains in proteins.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: Accurately covering the conformational space of amino acid side chains is essential for important applications such as protein design, docking and high resolution structure prediction. Today, the most common way to capture this conformational space is through rotamer libraries - discrete collections of side chain conformations derived from experimentally determined protein structures. The discretization can be exploited to efficiently search the conformational space. However, discretizing this naturally continuous space comes at the cost of losing detailed information that is crucial for certain applications. For example, rigorously combining rotamers with physical force fields is associated with numerous problems. RESULTS: In this work we present BASILISK: a generative, probabilistic model of the conformational space of side chains that makes it possible to sample in continuous space. In addition, sampling can be conditional upon the protein's detailed backbone conformation, again in continuous space - without involving discretization. CONCLUSIONS: A careful analysis of the model and a comparison with various rotamer libraries indicates that the model forms an excellent, fully continuous model of side chain conformational space. We also illustrate how the model can be used for rigorous, unbiased sampling with a physical force field, and how it improves side chain prediction when used as a pseudo-energy term. In conclusion, BASILISK is an important step forward on the way to a rigorous probabilistic description of protein structure in continuous space and in atomic detail

    Quantum Chemistry Calculations for Metabolomics

    Get PDF
    A primary goal of metabolomics studies is to fully characterize the small-molecule composition of complex biological and environmental samples. However, despite advances in analytical technologies over the past two decades, the majority of small molecules in complex samples are not readily identifiable due to the immense structural and chemical diversity present within the metabolome. Current gold-standard identification methods rely on reference libraries built using authentic chemical materials (“standards”), which are not available for most molecules. Computational quantum chemistry methods, which can be used to calculate chemical properties that are then measured by analytical platforms, offer an alternative route for building reference libraries, i.e., in silico libraries for “standards-free” identification. In this review, we cover the major roadblocks currently facing metabolomics and discuss applications where quantum chemistry calculations offer a solution. Several successful examples for nuclear magnetic resonance spectroscopy, ion mobility spectrometry, infrared spectroscopy, and mass spectrometry methods are reviewed. Finally, we consider current best practices, sources of error, and provide an outlook for quantum chemistry calculations in metabolomics studies. We expect this review will inspire researchers in the field of small-molecule identification to accelerate adoption of in silico methods for generation of reference libraries and to add quantum chemistry calculations as another tool at their disposal to characterize complex samples.A primary goal of metabolomics studies is to fully characterize the small-molecule composition of complex biological and environmental samples. However, despite advances in analytical technologies over the past two decades, the majority of small molecules in complex samples are not readily identifiable due to the immense structural and chemical diversity present within the metabolome. Current gold-standard identification methods rely on reference libraries built using authentic chemical materials (“standards”), which are not available for most molecules. Computational quantum chemistry methods, which can be used to calculate chemical properties that are then measured by analytical platforms, offer an alternative route for building reference libraries, i.e., in silico libraries for “standards-free” identification. In this review, we cover the major roadblocks currently facing metabolomics and discuss applications where quantum chemistry calculations offer a solution. Several successful examples for nuclear magnetic resonance spectroscopy, ion mobility spectrometry, infrared spectroscopy, and mass spectrometry methods are reviewed. Finally, we consider current best practices, sources of error, and provide an outlook for quantum chemistry calculations in metabolomics studies. We expect this review will inspire researchers in the field of small-molecule identification to accelerate adoption of in silico methods for generation of reference libraries and to add quantum chemistry calculations as another tool at their disposal to characterize complex samples

    Continuous Perception for Immersive Interaction and Computation in Molecular Sciences

    Get PDF
    Chemistry aims to understand the structure and reactions of molecules, which involve phenomena occurring at microscopic scales. However, scientists perceive the world at macroscopic scales, making it difficult to study complex molecular objects. Graphical representations, such as structural formulas, were developed to bridge this gap and aid in understanding. The advent of Quantum Mechanics further increased the complexity of the representation of microscopic objects. This dichotomy between conceptual representation and predictive quantification forms the foundation of Chemistry, now further explored with the rise of Artificial Intelligence. Recent advancements in computational sciences, increased computational power, and developments in Machine-Learning (ML) raise questions about the traditional scientific method. Computational scientists, who have relied on approximations based on fundamental rules, now face the possibility of accurately simulating nature without strictly adhering to its laws. This shift challenges the association between progress in understanding a phenomenon and the ability to predict it. Deep learning models can not only make predictions but also create new data. While these techniques find applications in fields like Natural Language Processing, they suffer from limitations and lack true intelligence or awareness of physical laws. The thesis aims to create mathematical descriptors for atom types, bond types, and angle types in ML procedures, ensuring the retention of their chemical meaning. The goal is to make quantitative predictions while interpreting changes in descriptors as chemical changes. To achieve this, the thesis develops a software called Proxima for Molecular Perception, which automatically perceives features from molecules. Proxima treats strongly coupled electrons as covalent bonds and lone pairs, while delocalized electrons are modeled using a Tight-Binding model. The resulting Molecular Graph captures the weak interactions between these units. Overall, this thesis explores the intersection of computational chemistry and Machine-Learning to enhance our understanding and predictive capabilities in the field of Chemistry by building the so-called Virtual Laboratory, a virtual environment with automatic access to structural databases to test chemical ideas on the fly (pre-processing) and explore the output of computational software (post-processing).  &nbsp

    Enumeration, conformation sampling and population of libraries of peptide macrocycles for the search of chemotherapeutic cardioprotection agents

    Get PDF
    Peptides are uniquely endowed with features that allow them to perturb previously difficult to drug biomolecular targets. Peptide macrocycles in particular have seen a flurry of recent interest due to their enhanced bioavailability, tunability and specificity. Although these properties make them attractive hit-candidates in early stage drug discovery, knowing which peptides to pursue is non‐trivial due to the magnitude of the peptide sequence space. Computational screening approaches show promise in their ability to address the size of this search space but suffer from their inability to accurately interrogate the conformational landscape of peptide macrocycles. We developed an in‐silico compound enumerator that was tasked with populating a conformationally laden peptide virtual library. This library was then used in the search for cardio‐protective agents (that may be administered, reducing tissue damage during reperfusion after ischemia (heart attacks)). Our enumerator successfully generated a library of 15.2 billion compounds, requiring the use of compression algorithms, conformational sampling protocols and management of aggregated compute resources in the context of a local cluster. In the absence of experimental biophysical data, we performed biased sampling during alchemical molecular dynamics simulations in order to observe cyclophilin‐D perturbation by cyclosporine A and its mitochondrial targeted analogue. Reliable intermediate state averaging through a WHAM analysis of the biased dynamic pulling simulations confirmed that the cardio‐protective activity of cyclosporine A was due to its mitochondrial targeting. Paralleltempered solution molecular dynamics in combination with efficient clustering isolated the essential dynamics of a cyclic peptide scaffold. The rapid enumeration of skeletons from these essential dynamics gave rise to a conformation laden virtual library of all the 15.2 Billion unique cyclic peptides (given the limits on peptide sequence imposed). Analysis of this library showed the exact extent of physicochemical properties covered, relative to the bare scaffold precursor. Molecular docking of a subset of the virtual library against cyclophilin‐D showed significant improvements in affinity to the target (relative to cyclosporine A). The conformation laden virtual library, accessed by our methodology, provided derivatives that were able to make many interactions per peptide with the cyclophilin‐D target. Machine learning methods showed promise in the training of Support Vector Machines for synthetic feasibility prediction for this library. The synergy between enumeration and conformational sampling greatly improves the performance of this library during virtual screening, even when only a subset is used

    Computational methods and tools to predict cytochrome P450 metabolism for drug discovery

    Get PDF
    In this review, we present important, recent developments in the computational prediction of cytochrome P450 (CYP) metabolism in the context of drug discovery. We discuss in silico models for the various aspects of CYP metabolism prediction, including CYP substrate and inhibitor predictors, site of metabolism predictors (i.e., metabolically labile sites within potential substrates) and metabolite structure predictors. We summarize the different approaches taken by these models, such as rule‐based methods, machine learning, data mining, quantum chemical methods, molecular interaction fields, and docking. We highlight the scope and limitations of each method and discuss future implications for the field of metabolism prediction in drug discovery.publishedVersio

    Ab initio machine learning in chemical compound space

    Get PDF
    Chemical compound space (CCS), the set of all theoretically conceivable combinations of chemical elements and (meta-)stable geometries that make up matter, is colossal. The first principles based virtual sampling of this space, for example in search of novel molecules or materials which exhibit desirable properties, is therefore prohibitive for all but the smallest sub-sets and simplest properties. We review studies aimed at tackling this challenge using modern machine learning techniques based on (i) synthetic data, typically generated using quantum mechanics based methods, and (ii) model architectures inspired by quantum mechanics. Such Quantum mechanics based Machine Learning (QML) approaches combine the numerical efficiency of statistical surrogate models with an {\em ab initio} view on matter. They rigorously reflect the underlying physics in order to reach universality and transferability across CCS. While state-of-the-art approximations to quantum problems impose severe computational bottlenecks, recent QML based developments indicate the possibility of substantial acceleration without sacrificing the predictive power of quantum mechanics
    • 

    corecore