2,296 research outputs found

    Detecting Malicious Websites Using Machine Learning

    Get PDF
    The growing use of the internet resulted in emerging of new websites every day (Total number of Websites - Internet Live Stats, 2020). Web surfing has become important for everyone regardless of their occupation, age or location. However, as the use of the internet is increasing so is the vulnerability to malware attacks through malicious websites (Softpedia, 2016). Identifying and dealing with such malicious website has been quite difficult in the past as it is quite challenging to separate good websites from bad websites. However, by using machine learning algorithms on large datasets it is now possible to detect such websites beforehand. Classifiers trained using algorithms such as logistic regression and Support Vector Machine (SVM) can be used to detect malicious websites and the users can be warned about the risk before they visit such sites. This project focuses on using a variety of different classification algorithms to distinguish whether a website is malicious or not using the Kaggle Malicious and Benign Website Dataset. We have showcased that it is possible to detect malicious websites with a reasonable amount of certainty (90% of the 75 malicious websites in the test set were identified) using machine learning models. We have also determined the features that were critical in predicting the likelihood of a website being malicious. Most of our key features are easily available (URL Length, number of Special characters, Country, Age of website)

    An Evasion and Counter-Evasion Study in Malicious Websites Detection

    Full text link
    Malicious websites are a major cyber attack vector, and effective detection of them is an important cyber defense task. The main defense paradigm in this regard is that the defender uses some kind of machine learning algorithms to train a detection model, which is then used to classify websites in question. Unlike other settings, the following issue is inherent to the problem of malicious websites detection: the attacker essentially has access to the same data that the defender uses to train its detection models. This 'symmetry' can be exploited by the attacker, at least in principle, to evade the defender's detection models. In this paper, we present a framework for characterizing the evasion and counter-evasion interactions between the attacker and the defender, where the attacker attempts to evade the defender's detection models by taking advantage of this symmetry. Within this framework, we show that an adaptive attacker can make malicious websites evade powerful detection models, but proactive training can be an effective counter-evasion defense mechanism. The framework is geared toward the popular detection model of decision tree, but can be adapted to accommodate other classifiers

    An Evasion Attack against ML-based Phishing URL Detectors

    Full text link
    Background: Over the year, Machine Learning Phishing URL classification (MLPU) systems have gained tremendous popularity to detect phishing URLs proactively. Despite this vogue, the security vulnerabilities of MLPUs remain mostly unknown. Aim: To address this concern, we conduct a study to understand the test time security vulnerabilities of the state-of-the-art MLPU systems, aiming at providing guidelines for the future development of these systems. Method: In this paper, we propose an evasion attack framework against MLPU systems. To achieve this, we first develop an algorithm to generate adversarial phishing URLs. We then reproduce 41 MLPU systems and record their baseline performance. Finally, we simulate an evasion attack to evaluate these MLPU systems against our generated adversarial URLs. Results: In comparison to previous works, our attack is: (i) effective as it evades all the models with an average success rate of 66% and 85% for famous (such as Netflix, Google) and less popular phishing targets (e.g., Wish, JBHIFI, Officeworks) respectively; (ii) realistic as it requires only 23ms to produce a new adversarial URL variant that is available for registration with a median cost of only $11.99/year. We also found that popular online services such as Google SafeBrowsing and VirusTotal are unable to detect these URLs. (iii) We find that Adversarial training (successful defence against evasion attack) does not significantly improve the robustness of these systems as it decreases the success rate of our attack by only 6% on average for all the models. (iv) Further, we identify the security vulnerabilities of the considered MLPU systems. Our findings lead to promising directions for future research. Conclusion: Our study not only illustrate vulnerabilities in MLPU systems but also highlights implications for future study towards assessing and improving these systems.Comment: Draft for ACM TOP

    High Accuracy Phishing Detection Based on Convolutional Neural Networks

    Get PDF
    The persistent growth in phishing and the rising volume of phishing websites has led to individuals and organizations worldwide becoming increasingly exposed to various cyber-attacks. Consequently, more effective phishing detection is required for improved cyber defence. Hence, in this paper we present a deep learning-based approach to enable high accuracy detection of phishing sites. The proposed approach utilizes convolutional neural networks (CNN) for high accuracy classification to distinguish genuine sites from phishing sites. We evaluate the models using a dataset obtained from 6,157 genuine and 4,898 phishing websites. Based on the results of extensive experiments, our CNN based models proved to be highly effective in detecting unknown phishing sites. Furthermore, the CNN based approach performed better than traditional machine learning classifiers evaluated on the same dataset, reaching 98.2% phishing detection rate with an F1-score of 0.976. The method presented in this pa-per compares favourably to the state-of-the art in deep learning based phishing website detection

    DeltaPhish: Detecting Phishing Webpages in Compromised Websites

    Full text link
    The large-scale deployment of modern phishing attacks relies on the automatic exploitation of vulnerable websites in the wild, to maximize profit while hindering attack traceability, detection and blacklisting. To the best of our knowledge, this is the first work that specifically leverages this adversarial behavior for detection purposes. We show that phishing webpages can be accurately detected by highlighting HTML code and visual differences with respect to other (legitimate) pages hosted within a compromised website. Our system, named DeltaPhish, can be installed as part of a web application firewall, to detect the presence of anomalous content on a website after compromise, and eventually prevent access to it. DeltaPhish is also robust against adversarial attempts in which the HTML code of the phishing page is carefully manipulated to evade detection. We empirically evaluate it on more than 5,500 webpages collected in the wild from compromised websites, showing that it is capable of detecting more than 99% of phishing webpages, while only misclassifying less than 1% of legitimate pages. We further show that the detection rate remains higher than 70% even under very sophisticated attacks carefully designed to evade our system.Comment: Preprint version of the work accepted at ESORICS 201

    CharBot: A Simple and Effective Method for Evading DGA Classifiers

    Full text link
    Domain generation algorithms (DGAs) are commonly leveraged by malware to create lists of domain names which can be used for command and control (C&C) purposes. Approaches based on machine learning have recently been developed to automatically detect generated domain names in real-time. In this work, we present a novel DGA called CharBot which is capable of producing large numbers of unregistered domain names that are not detected by state-of-the-art classifiers for real-time detection of DGAs, including the recently published methods FANCI (a random forest based on human-engineered features) and LSTM.MI (a deep learning approach). CharBot is very simple, effective and requires no knowledge of the targeted DGA classifiers. We show that retraining the classifiers on CharBot samples is not a viable defense strategy. We believe these findings show that DGA classifiers are inherently vulnerable to adversarial attacks if they rely only on the domain name string to make a decision. Designing a robust DGA classifier may, therefore, necessitate the use of additional information besides the domain name alone. To the best of our knowledge, CharBot is the simplest and most efficient black-box adversarial attack against DGA classifiers proposed to date
    corecore