244 research outputs found

    Privacy-preserving scoring of tree ensembles : a novel framework for AI in healthcare

    Get PDF
    Machine Learning (ML) techniques now impact a wide variety of domains. Highly regulated industries such as healthcare and finance have stringent compliance and data governance policies around data sharing. Advances in secure multiparty computation (SMC) for privacy-preserving machine learning (PPML) can help transform these regulated industries by allowing ML computations over encrypted data with personally identifiable information (PII). Yet very little of SMC-based PPML has been put into practice so far. In this paper we present the very first framework for privacy-preserving classification of tree ensembles with application in healthcare. We first describe the underlying cryptographic protocols that enable a healthcare organization to send encrypted data securely to a ML scoring service and obtain encrypted class labels without the scoring service actually seeing that input in the clear. We then describe the deployment challenges we solved to integrate these protocols in a cloud based scalable risk-prediction platform with multiple ML models for healthcare AI. Included are system internals, and evaluations of our deployment for supporting physicians to drive better clinical outcomes in an accurate, scalable, and provably secure manner. To the best of our knowledge, this is the first such applied framework with SMC-based privacy-preserving machine learning for healthcare

    Predicting fraud in mobile money transfer

    Get PDF

    Predicting Pulsars from Imbalanced Dataset with Hybrid Resampling Approach

    Get PDF
    Pulsar stars, usually neutron stars, are spherical and compact objects containing a large quantity of mass. Each pulsar star possesses a magnetic field and emits a slightly different pattern of electromagnetic radiation which is used to identify the potential candidates for a real pulsar star. Pulsar stars are considered an important cosmic phenomenon, and scientists use them to study nuclear physics, gravitational waves, and collisions between black holes. Defining the process of automatic detection of pulsar stars can accelerate the study of pulsar stars by scientists. This study contrives an accurate and efficient approach for true pulsar detection using supervised machine learning. For experiments, the high time-resolution (HTRU2) dataset is used in this study. To resolve the data imbalance problem and overcome model overfitting, a hybrid resampling approach is presented in this study. Experiments are performed with imbalanced and balanced datasets using well-known machine learning algorithms. Results demonstrate that the proposed hybrid resampling approach proves highly influential to avoid model overfitting and increase the prediction accuracy. With the proposed hybrid resampling approach, the extra tree classifier achieves a 0.993 accuracy score for true pulsar star prediction

    Accident prediction using machine learning:analyzing weather conditions, and model performance

    Get PDF
    Abstract. The primary focus of this study was to investigate the impact of weather and road conditions on the severity of accidents and to determine the feasibility of machine learning models in accurately predicting the likelihood of such incidents. The research was centered on two key research questions. Firstly, the study examined the influence of weather and road conditions on accident severity and identified the most related factors contributing to accidents. We utilized an open-source accident dataset, which was preprocessed using techniques like variable selection, missing data elimination, and data balancing through the Synthetic Minority Over-sampling Technique (SMOTE). Chi-square statistical analysis was performed, suggesting that all weather-related variables are more or less associated with the severity of accidents. Visibility and temperature were found to be the most critical factors affecting the severity of road accidents. Hence, appropriate measures such as implementing effective fog dispersal systems, heatwave alerts, or improved road maintenance during extreme temperatures could help reduce accident severity. Secondly, the research evaluated the ability of machine learning models including decision trees, random forests, naive bayes, extreme gradient boost, and neural networks to predict accident likelihood. The models’ performance was gauged using metrics like accuracy, precision, recall, and F1 score. The Random Forest model emerged as the most reliable and accurate model for predicting accidents, with an overall accuracy of 98.53%. The Decision Tree model also showed high overall accuracy (95.33%), indicating its reliability. However, the Naive Bayes model showed the lowest accuracy (63.31%) and was deemed less reliable in this context. It is concluded that machine learning models can be effectively used to predict the likelihood of accidents, with models like Random Forest and Decision Tree proving the most effective. However, the effectiveness of each model may vary depending on the dataset and context, necessitating further testing and validation for real-world implementation. These findings not only provide insight into the factors affecting accident severity but also open a promising avenue in employing machine learning techniques for proactive accident prediction and mitigation. Future studies can aim to refine the models further and potentially integrate them into traffic management systems to enhance road safety
    • …
    corecore