5 research outputs found

    Machine learning approach for detection of nonTor traffic

    Get PDF
    Intrusion detection has attracted a considerable interest from researchers and industry. After many years of research the community still faces the problem of building reliable and efficient intrusion detection systems (IDS) capable of handling large quantities of data with changing patterns in real time situations. The Tor network is popular in providing privacy and security to end user by anonymizing the identity of internet users connecting through a series of tunnels and nodes. This work identifies two problems; classification of Tor traffic and nonTor traffic to expose the activities within Tor traffic that minimizes the protection of users in using the UNB-CIC Tor Network Traffic dataset and classification of the Tor traffic flow in the network. This paper proposes a hybrid classifier; Artificial Neural Network in conjunction with Correlation feature selection algorithm for dimensionality reduction and improved classification performance. The reliability and efficiency of the propose hybrid classifier is compared with Support Vector Machine and naïve Bayes classifiers in detecting nonTor traffic in UNB-CIC Tor Network Traffic dataset. Experimental results show the hybrid classifier, ANN-CFS proved a better classifier in detecting nonTor traffic and classifying the Tor traffic flow in UNB-CIC Tor Network Traffic dataset

    A taxonomy of malicious traffic for intrusion detection systems

    Get PDF
    With the increasing number of network threats it is essential to have a knowledge of existing and new network threats to design better intrusion detection systems. In this paper we propose a taxonomy for classifying network attacks in a consistent way, allowing security researchers to focus their efforts on creating accurate intrusion detection systems and targeted datasets

    Modeling Realistic Adversarial Attacks against Network Intrusion Detection Systems

    Get PDF
    The incremental diffusion of machine learning algorithms in supporting cybersecurity is creating novel defensive opportunities but also new types of risks. Multiple researches have shown that machine learning methods are vulnerable to adversarial attacks that create tiny perturbations aimed at decreasing the effectiveness of detecting threats. We observe that existing literature assumes threat models that are inappropriate for realistic cybersecurity scenarios because they consider opponents with complete knowledge about the cyber detector or that can freely interact with the target systems. By focusing on Network Intrusion Detection Systems based on machine learning, we identify and model the real capabilities and circumstances required by attackers to carry out feasible and successful adversarial attacks. We then apply our model to several adversarial attacks proposed in literature and highlight the limits and merits that can result in actual adversarial attacks. The contributions of this paper can help hardening defensive systems by letting cyber defenders address the most critical and real issues, and can benefit researchers by allowing them to devise novel forms of adversarial attacks based on realistic threat models

    Machine Learning Approach for Detectionof nonTor Traffic

    No full text
    corecore