369,424 research outputs found

    Machine learning predicts histologic type and grade of canine gliomas based on MRI texture analysis.

    Get PDF
    Conventional MRI features of canine gliomas subtypes and grades significantly overlap. Texture analysis (TA) quantifies image texture based on spatial arrangement of pixel intensities. Machine learning (ML) models based on MRI-TA demonstrate high accuracy in predicting brain tumor types and grades in human medicine. The aim of this retrospective, diagnostic accuracy study was to investigate the accuracy of ML-based MRI-TA in predicting canine gliomas histologic types and grades. Dogs with histopathological diagnosis of intracranial glioma and available brain MRI were included. Tumors were manually segmented across their entire volume in enhancing part, non-enhancing part, and peri-tumoral vasogenic edema in T2-weighted (T2w), T1-weighted (T1w), FLAIR, and T1w postcontrast sequences. Texture features were extracted and fed into three ML classifiers. Classifiers' performance was assessed using a leave-one-out cross-validation approach. Multiclass and binary models were built to predict histologic types (oligodendroglioma vs. astrocytoma vs. oligoastrocytoma) and grades (high vs. low), respectively. Thirty-eight dogs with a total of 40 masses were included. Machine learning classifiers had an average accuracy of 77% for discriminating tumor types and of 75.6% for predicting high-grade gliomas. The support vector machine classifier had an accuracy of up to 94% for predicting tumor types and up to 87% for predicting high-grade gliomas. The most discriminative texture features of tumor types and grades appeared related to the peri-tumoral edema in T1w images and to the non-enhancing part of the tumor in T2w images, respectively. In conclusion, ML-based MRI-TA has the potential to discriminate intracranial canine gliomas types and grades

    Machine learning assisted DSC-MRI radiomics as a tool for glioma classification by grade and mutation status

    Get PDF
    Background: Combining MRI techniques with machine learning methodology is rapidly gaining attention as a promising method for staging of brain gliomas. This study assesses the diagnostic value of such a framework applied to dynamic susceptibility contrast (DSC)-MRI in classifying treatment-naïve gliomas from a multi-center patients into WHO grades II-IV and across their isocitrate dehydrogenase (IDH) mutation status. Methods: Three hundred thirty-three patients from 6 tertiary centres, diagnosed histologically and molecularly with primary gliomas (IDH-mutant = 151 or IDH-wildtype = 182) were retrospectively identified. Raw DSC-MRI data was post-processed for normalised leakage-corrected relative cerebral blood volume (rCBV) maps. Shape, intensity distribution (histogram) and rotational invariant Haralick texture features over the tumour mask were extracted. Differences in extracted features across glioma grades and mutation status were tested using the Wilcoxon two-sample test. A random-forest algorithm was employed (2-fold cross-validation, 250 repeats) to predict grades or mutation status using the extracted features. Results: Shape, distribution and texture features showed significant differences across mutation status. WHO grade II-III differentiation was mostly driven by shape features while texture and intensity feature were more relevant for the III-IV separation. Increased number of features became significant when differentiating grades further apart from one another. Gliomas were correctly stratified by mutation status in 71% and by grade in 53% of the cases (87% of the gliomas grades predicted with distance less than 1). Conclusions: Despite large heterogeneity in the multi-center dataset, machine learning assisted DSC-MRI radiomics hold potential to address the inherent variability and presents a promising approach for non-invasive glioma molecular subtyping and grading

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Optimization Methods for Inverse Problems

    Full text link
    Optimization plays an important role in solving many inverse problems. Indeed, the task of inversion often either involves or is fully cast as a solution of an optimization problem. In this light, the mere non-linear, non-convex, and large-scale nature of many of these inversions gives rise to some very challenging optimization problems. The inverse problem community has long been developing various techniques for solving such optimization tasks. However, other, seemingly disjoint communities, such as that of machine learning, have developed, almost in parallel, interesting alternative methods which might have stayed under the radar of the inverse problem community. In this survey, we aim to change that. In doing so, we first discuss current state-of-the-art optimization methods widely used in inverse problems. We then survey recent related advances in addressing similar challenges in problems faced by the machine learning community, and discuss their potential advantages for solving inverse problems. By highlighting the similarities among the optimization challenges faced by the inverse problem and the machine learning communities, we hope that this survey can serve as a bridge in bringing together these two communities and encourage cross fertilization of ideas.Comment: 13 page
    • …
    corecore