175,548 research outputs found

    Prediction of Progression to Severe Stroke in Initially Diagnosed Anterior Circulation Ischemic Cerebral Infarction

    Get PDF
    Purpose: Accurate prediction of the progression to severe stroke in initially diagnosed nonsevere patients with acute–subacute anterior circulation nonlacuna ischemic infarction (ASACNLII) is important in making clinical decision. This study aimed to apply a machine learning method to predict if the initially diagnosed nonsevere patients with ASACNLII would progress to severe stroke by using diffusion-weighted images and clinical information on admission.Methods: This retrospective study enrolled 344 patients with ASACNLII from June 2017 to August 2020 on admission, and 108 cases progressed to severe stroke during hospitalization within 3–21 days. The entire data were randomized into a training set (n = 271) and an independent test set (n = 73). A U-Net neural network was employed for automatic segmentation and volume measurement of the ischemic lesions. Predictive models were developed and used for evaluating the progression to severe stroke using different feature sets (the volume data, the clinical data, and the combination) and machine learning methods (random forest, support vector machine, and logistic regression).Results: The U-Net showed high correlation with manual segmentation in terms of Dice coefficient of 0.806 and R2 value of the volume measurements of 0.960 in the test set. The random forest classifier of the volume + clinical combination achieved the best area under the receiver operating characteristic curve of 0.8358 (95% CI 0.7321–0.9269), and the accuracy, sensitivity, and specificity were 0.7780 (0.7397–0.7945), 0.7695 (0.6102–0.9074), and 0.8686 (0.6923–1.0), respectively. The Shapley additive explanation diagram showed the volume variable as the most important predictor.Conclusion: The U-Net was fully automatic and showed a high correlation with manual segmentation. An integrated approach combining clinical variables and stroke lesion volumes that were derived from the advanced machine learning algorithms had high accuracy in predicting the progression to severe stroke in ASACNLII patients

    On The Effect of Hyperedge Weights On Hypergraph Learning

    Full text link
    Hypergraph is a powerful representation in several computer vision, machine learning and pattern recognition problems. In the last decade, many researchers have been keen to develop different hypergraph models. In contrast, no much attention has been paid to the design of hyperedge weights. However, many studies on pairwise graphs show that the choice of edge weight can significantly influence the performances of such graph algorithms. We argue that this also applies to hypegraphs. In this paper, we empirically discuss the influence of hyperedge weight on hypegraph learning via proposing three novel hyperedge weights from the perspectives of geometry, multivariate statistical analysis and linear regression. Extensive experiments on ORL, COIL20, JAFFE, Sheffield, Scene15 and Caltech256 databases verify our hypothesis. Similar to graph learning, several representative hyperedge weighting schemes can be concluded by our experimental studies. Moreover, the experiments also demonstrate that the combinations of such weighting schemes and conventional hypergraph models can get very promising classification and clustering performances in comparison with some recent state-of-the-art algorithms

    Data Quality in Predictive Toxicology: Identification of Chemical Structures and Calculation of Chemical Descriptors

    Get PDF
    Every technique for toxicity prediction and for the detection of structure–activity relationships relies on the accurate estimation and representation of chemical and toxicologic properties. In this paper we discuss the potential sources of errors associated with the identification of compounds, the representation of their structures, and the calculation of chemical descriptors. It is based on a case study where machine learning techniques were applied to data from noncongeneric compounds and a complex toxicologic end point (carcinogenicity). We propose methods applicable to the routine quality control of large chemical datasets, but our main intention is to raise awareness about this topic and to open a discussion about quality assurance in predictive toxicology. The accuracy and reproducibility of toxicity data will be reported in another paper

    Opening the Black Box of Financial AI with CLEAR-Trade: A CLass-Enhanced Attentive Response Approach for Explaining and Visualizing Deep Learning-Driven Stock Market Prediction

    Get PDF
    Deep learning has been shown to outperform traditional machine learning algorithms across a wide range of problem domains. However, current deep learning algorithms have been criticized as uninterpretable "black-boxes" which cannot explain their decision making processes. This is a major shortcoming that prevents the widespread application of deep learning to domains with regulatory processes such as finance. As such, industries such as finance have to rely on traditional models like decision trees that are much more interpretable but less effective than deep learning for complex problems. In this paper, we propose CLEAR-Trade, a novel financial AI visualization framework for deep learning-driven stock market prediction that mitigates the interpretability issue of deep learning methods. In particular, CLEAR-Trade provides a effective way to visualize and explain decisions made by deep stock market prediction models. We show the efficacy of CLEAR-Trade in enhancing the interpretability of stock market prediction by conducting experiments based on S&P 500 stock index prediction. The results demonstrate that CLEAR-Trade can provide significant insight into the decision-making process of deep learning-driven financial models, particularly for regulatory processes, thus improving their potential uptake in the financial industry
    corecore